BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30376319)

  • 21. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions.
    van Zandvoort I; Wang Y; Rasrendra CB; van Eck ER; Bruijnincx PC; Heeres HJ; Weckhuysen BM
    ChemSusChem; 2013 Sep; 6(9):1745-58. PubMed ID: 23836679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of xylose into furfural using lignosulfonic acid as catalyst in ionic liquid.
    Wu C; Chen W; Zhong L; Peng X; Sun R; Fang J; Zheng S
    J Agric Food Chem; 2014 Jul; 62(30):7430-5. PubMed ID: 25007384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of products from hydrothermal carbonization of pine.
    Wu Q; Yu S; Hao N; Wells T; Meng X; Li M; Pu Y; Liu S; Ragauskas AJ
    Bioresour Technol; 2017 Nov; 244(Pt 1):78-83. PubMed ID: 28777993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Furfural production by 'acidic steam stripping' of lignocellulose.
    van Buijtenen J; Lange JP; Espinosa Alonso L; Spiering W; Polmans RF; Haan RJ
    ChemSusChem; 2013 Nov; 6(11):2132-6. PubMed ID: 23908004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards a new understanding of the retro-aldol reaction for oxidative conversion of lignin to aromatic aldehydes and acids.
    More A; Elder T; Jiang Z
    Int J Biol Macromol; 2021 Jul; 183():1505-1513. PubMed ID: 34023372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose.
    Yang Y; Hu CW; Abu-Omar MM
    ChemSusChem; 2012 Feb; 5(2):405-10. PubMed ID: 22315196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear and competitive sorption of apolar compounds in black carbon-free natural organic materials.
    Pignatello JJ; Lu Y; LeBoeuf EJ; Huang W; Song J; Xing B
    J Environ Qual; 2006; 35(4):1049-59. PubMed ID: 16738390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction.
    Yemiş O; Mazza G
    Bioresour Technol; 2011 Aug; 102(15):7371-8. PubMed ID: 21620690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects.
    Cao L; Yu IKM; Liu Y; Ruan X; Tsang DCW; Hunt AJ; Ok YS; Song H; Zhang S
    Bioresour Technol; 2018 Dec; 269():465-475. PubMed ID: 30146182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies.
    Ibbett R; Gaddipati S; Davies S; Hill S; Tucker G
    Bioresour Technol; 2011 Oct; 102(19):9272-8. PubMed ID: 21763128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production.
    Barakat A; Monlau F; Steyer JP; Carrere H
    Bioresour Technol; 2012 Jan; 104():90-9. PubMed ID: 22100239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of carbons derived from cellulose and lignin and their oxidative behavior.
    Xie X; Goodell B; Zhang D; Nagle DC; Qian Y; Peterson ML; Jellison J
    Bioresour Technol; 2009 Mar; 100(5):1797-802. PubMed ID: 19027291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin.
    Lamminpää K; Ahola J; Tanskanen J
    Bioresour Technol; 2015 Feb; 177():94-101. PubMed ID: 25479399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alcoholysis: A Promising Technology for Conversion of Lignocellulose and Platform Chemicals.
    Zhu S; Guo J; Wang X; Wang J; Fan W
    ChemSusChem; 2017 Jun; 10(12):2547-2559. PubMed ID: 28485128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid.
    Liu L; Li Z; Hou W; Shen H
    Carbohydr Polym; 2018 Feb; 181():778-784. PubMed ID: 29254035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Processed Lignin as a Byproduct of the Generation of 5-(Chloromethyl)furfural from Biomass: A Promising New Mesoporous Material.
    Budarin VL; Clark JH; Henschen J; Farmer TJ; Macquarrie DJ; Mascal M; Nagaraja GK; Petchey TH
    ChemSusChem; 2015 Dec; 8(24):4172-9. PubMed ID: 26601798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrothermal fractionation of woody biomass: Lignin effect on sugars recovery.
    Yedro FM; Cantero DA; Pascual M; García-Serna J; Cocero MJ
    Bioresour Technol; 2015 Sep; 191():124-32. PubMed ID: 25985415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse.
    Li AL; Hou XD; Lin KP; Zhang X; Fu MH
    J Biosci Bioeng; 2018 Sep; 126(3):346-354. PubMed ID: 29657125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates.
    Gairola K; Smirnova I
    Bioresour Technol; 2012 Nov; 123():592-8. PubMed ID: 22947445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An efficient headspace gas chromatographic technique for determining humic acid content in fertilizer.
    Xie WQ; Gong YX; Yu KX
    J Chromatogr A; 2019 Jul; 1596():194-198. PubMed ID: 30961961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.