These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30376319)

  • 41. Cyclopentyl methyl ether: a green co-solvent for the selective dehydration of lignocellulosic pentoses to furfural.
    Campos Molina MJ; Mariscal R; Ojeda M; López Granados M
    Bioresour Technol; 2012 Dec; 126():321-7. PubMed ID: 23128237
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of lignins isolated with alkali from the hydrothermal or dilute-acid pretreated rapeseed straw during bioethanol production.
    Chen BY; Zhao BC; Li MF; Sun RC
    Int J Biol Macromol; 2018 Jan; 106():885-892. PubMed ID: 28830775
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.
    Hanson SK; Baker RT
    Acc Chem Res; 2015 Jul; 48(7):2037-48. PubMed ID: 26151603
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Valorization of Lignin by Partial Wet Oxidation Using Sustainable Heteropoly Acid Catalysts.
    Demesa AG; Laari A; Sillanpää M; Koiranen T
    Molecules; 2017 Sep; 22(10):. PubMed ID: 28956838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid.
    Zhang L; Yu H; Wang P
    Bioresour Technol; 2013 May; 136():515-21. PubMed ID: 23567725
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unravelling Some of the Key Transformations in the Hydrothermal Liquefaction of Lignin.
    Lui MY; Chan B; Yuen AKL; Masters AF; Montoya A; Maschmeyer T
    ChemSusChem; 2017 May; 10(10):2140-2144. PubMed ID: 28371419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.
    Nitsos CK; Matis KA; Triantafyllidis KS
    ChemSusChem; 2013 Jan; 6(1):110-22. PubMed ID: 23180649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin.
    Dong C; Feng C; Liu Q; Shen D; Xiao R
    Bioresour Technol; 2014 Jun; 162():136-41. PubMed ID: 24747392
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iron oxyhydroxide catalyzes production of artificial humic substances from waste biomass.
    Chen X; Yang B; Zhou H; Boguta P; Fu X; Ivanets A; Ratko AA; Kouznetsova T; Liu Y; He X; Zhao D; Su X
    J Environ Manage; 2024 Feb; 352():120152. PubMed ID: 38266528
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization.
    Jia G; Innocent MT; Yu Y; Hu Z; Wang X; Xiang H; Zhu M
    Int J Biol Macromol; 2023 Jan; 226():646-659. PubMed ID: 36521701
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characteristic transformation of humic acid during photoelectrocatalysis process and its subsequent disinfection byproduct formation potential.
    Li A; Zhao X; Liu H; Qu J
    Water Res; 2011 Nov; 45(18):6131-40. PubMed ID: 21955983
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increase in complexation ability of humic acids with the addition of ligneous bulking agents during sewage sludge composting.
    Xiong X; Yan-Xia L; Ming Y; Feng-Song Z; Wei L
    Bioresour Technol; 2010 Dec; 101(24):9650-3. PubMed ID: 20724147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterogeneously Catalyzed Hydrothermal Processing of C
    Zhang X; Wilson K; Lee AF
    Chem Rev; 2016 Oct; 116(19):12328-12368. PubMed ID: 27680093
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of the composition of the initial mixtures on the chemical composition, physicochemical properties and humic-like substances content of composts.
    Silva ME; de Lemos LT; Nunes OC; Cunha-Queda AC
    Waste Manag; 2014 Jan; 34(1):21-7. PubMed ID: 24119374
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanistic Investigation into the Formation of Humins in Acid-Catalyzed Biomass Reactions.
    Velasco Calderón JC; Arora JS; Mushrif SH
    ACS Omega; 2022 Dec; 7(49):44786-44795. PubMed ID: 36530267
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Soluble Lignin on the Formic Acid-Catalyzed Formation of Furfural: A Case Study for the Upgrading of Hemicellulose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2016 Mar; 9(5):492-504. PubMed ID: 26805656
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR.
    Teramura H; Sasaki K; Oshima T; Aikawa S; Matsuda F; Okamoto M; Shirai T; Kawaguchi H; Ogino C; Yamasaki M; Kikuchi J; Kondo A
    PLoS One; 2015; 10(6):e0128417. PubMed ID: 26083431
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of carboxylic acids from the non-lignin residue of black liquor by hydrothermal treatments.
    Pola L; Collado S; Oulego P; Díaz M
    Bioresour Technol; 2019 Jul; 284():105-114. PubMed ID: 30927647
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.
    Ma R; Guo M; Lin KT; Hebert VR; Zhang J; Wolcott MP; Quintero M; Ramasamy KK; Chen X; Zhang X
    Chemistry; 2016 Jul; 22(31):10884-91. PubMed ID: 27373451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.