These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 30376327)
1. A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics. Ni J; Wu YT; Tao F; Peng Y; Xu P J Am Chem Soc; 2018 Nov; 140(47):16001-16005. PubMed ID: 30376327 [TBL] [Abstract][Full Text] [Related]
2. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin. Furuya T; Miura M; Kino K Chembiochem; 2014 Oct; 15(15):2248-54. PubMed ID: 25164030 [TBL] [Abstract][Full Text] [Related]
3. Toward engineering Wu W; Liu F; Singh S Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2970-2975. PubMed ID: 29500185 [TBL] [Abstract][Full Text] [Related]
4. Temperature-Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols. Ni J; Gao YY; Tao F; Liu HY; Xu P Angew Chem Int Ed Engl; 2018 Jan; 57(5):1214-1217. PubMed ID: 29178412 [TBL] [Abstract][Full Text] [Related]
5. Engineering a Carotenoid Cleavage Oxygenase for Coenzyme-Free Synthesis of Vanillin from Ferulic Acid. Zheng R; Chen Q; Yang Q; Gong T; Hu CY; Meng Y J Agric Food Chem; 2024 May; 72(21):12209-12218. PubMed ID: 38751167 [TBL] [Abstract][Full Text] [Related]
6. Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin. Saikia K; Vishnu D; Rathankumar AK; Palanisamy Athiyaman B; Batista-García RA; Folch-Mallol JL; Cabana H; Kumar VV J Air Waste Manag Assoc; 2020 Dec; 70(12):1252-1259. PubMed ID: 32701040 [TBL] [Abstract][Full Text] [Related]
7. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process. Furuya T; Miura M; Kuroiwa M; Kino K N Biotechnol; 2015 May; 32(3):335-9. PubMed ID: 25765579 [TBL] [Abstract][Full Text] [Related]
8. Pseudomonas as Versatile Aromatics Cell Factory. Schwanemann T; Otto M; Wierckx N; Wynands B Biotechnol J; 2020 Nov; 15(11):e1900569. PubMed ID: 32978889 [TBL] [Abstract][Full Text] [Related]
9. Metal Triflates for the Production of Aromatics from Lignin. Deuss PJ; Lahive CW; Lancefield CS; Westwood NJ; Kamer PC; Barta K; de Vries JG ChemSusChem; 2016 Oct; 9(20):2974-2981. PubMed ID: 27650221 [TBL] [Abstract][Full Text] [Related]
10. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Rahimi A; Ulbrich A; Coon JJ; Stahl SS Nature; 2014 Nov; 515(7526):249-52. PubMed ID: 25363781 [TBL] [Abstract][Full Text] [Related]
11. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Cao L; Yu IKM; Liu Y; Ruan X; Tsang DCW; Hunt AJ; Ok YS; Song H; Zhang S Bioresour Technol; 2018 Dec; 269():465-475. PubMed ID: 30146182 [TBL] [Abstract][Full Text] [Related]
12. Improved biotransformation of lignin-valorized vanillin into vanillylamine in a sustainable bioreaction medium. Li Q; Gao R; Li Y; Fan B; Ma C; He YC Bioresour Technol; 2023 Sep; 384():129292. PubMed ID: 37295479 [TBL] [Abstract][Full Text] [Related]
13. Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. Yang W; Jiao L; Wang X; Wu W; Lian H; Dai H Int J Biol Macromol; 2021 Jan; 166():1312-1319. PubMed ID: 33161075 [TBL] [Abstract][Full Text] [Related]
14. The structure of a prokaryotic feruloyl-CoA hydratase-lyase from a lignin-degrading consortium with high oligomerization stability under extreme pHs. Liberato MV; Araújo JN; Sodré V; Gonçalves TA; Vilela N; Moraes EC; Garcia W; Squina FM Biochim Biophys Acta Proteins Proteom; 2020 Mar; 1868(3):140344. PubMed ID: 31841665 [TBL] [Abstract][Full Text] [Related]
15. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Weng C; Peng X; Han Y Biotechnol Biofuels; 2021 Apr; 14(1):84. PubMed ID: 33812391 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. Sonoki T; Morooka M; Sakamoto K; Otsuka Y; Nakamura M; Jellison J; Goodell B J Biotechnol; 2014 Dec; 192 Pt A():71-7. PubMed ID: 25449108 [TBL] [Abstract][Full Text] [Related]
17. Biotechnological production of vanillin using immobilized enzymes. Furuya T; Kuroiwa M; Kino K J Biotechnol; 2017 Feb; 243():25-28. PubMed ID: 28042012 [TBL] [Abstract][Full Text] [Related]
18. Lignin Depolymerization to BTXs. Serrano L; Cecilia JA; García-Sancho C; García A Top Curr Chem (Cham); 2019 Sep; 377(5):26. PubMed ID: 31529210 [TBL] [Abstract][Full Text] [Related]
19. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. Sainsbury PD; Hardiman EM; Ahmad M; Otani H; Seghezzi N; Eltis LD; Bugg TD ACS Chem Biol; 2013 Oct; 8(10):2151-6. PubMed ID: 23898824 [TBL] [Abstract][Full Text] [Related]
20. Biocatalytic valorization of lignin subunit: Screening a carboxylic acid reductase with high substrate preference to syringyl functional group. Lee HS; Park J; Yeon YJ Enzyme Microb Technol; 2022 Nov; 161():110099. PubMed ID: 35905638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]