BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30376562)

  • 1. Predicting bioprocess targets of chemical compounds through integration of chemical-genetic and genetic interactions.
    Simpkins SW; Nelson J; Deshpande R; Li SC; Piotrowski JS; Wilson EH; Gebre AA; Safizadeh H; Okamoto R; Yoshimura M; Costanzo M; Yashiroda Y; Ohya Y; Osada H; Yoshida M; Boone C; Myers CL
    PLoS Comput Biol; 2018 Oct; 14(10):e1006532. PubMed ID: 30376562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOSAIC: a chemical-genetic interaction data repository and web resource for exploring chemical modes of action.
    Nelson J; Simpkins SW; Safizadeh H; Li SC; Piotrowski JS; Hirano H; Yashiroda Y; Osada H; Yoshida M; Boone C; Myers CL
    Bioinformatics; 2018 Apr; 34(7):1251-1252. PubMed ID: 29206899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Emili A
    Methods Mol Biol; 2011; 781():99-126. PubMed ID: 21877280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Greenblatt J; Emili A
    Methods Mol Biol; 2011; 765():125-53. PubMed ID: 21815091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional annotation of chemical libraries across diverse biological processes.
    Piotrowski JS; Li SC; Deshpande R; Simpkins SW; Nelson J; Yashiroda Y; Barber JM; Safizadeh H; Wilson E; Okada H; Gebre AA; Kubo K; Torres NP; LeBlanc MA; Andrusiak K; Okamoto R; Yoshimura M; DeRango-Adem E; van Leeuwen J; Shirahige K; Baryshnikova A; Brown GW; Hirano H; Costanzo M; Andrews B; Ohya Y; Osada H; Yoshida M; Myers CL; Boone C
    Nat Chem Biol; 2017 Sep; 13(9):982-993. PubMed ID: 28759014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Use of Large-Scale Chemically-Induced Transcriptome Data Acquired from LINCS to Study Small Molecules.
    Iwata M; Yamanishi Y
    Methods Mol Biol; 2019; 1888():189-203. PubMed ID: 30519948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents.
    Kim ND; Park ES; Kim YH; Moon SK; Lee SS; Ahn SK; Yu DY; No KT; Kim KH
    Bioorg Med Chem; 2010 Oct; 18(19):7092-100. PubMed ID: 20810285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Analysis of Functional Enrichment (SAFE) in Large Biological Networks.
    Baryshnikova A
    Methods Mol Biol; 2018; 1819():249-268. PubMed ID: 30421408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying the logic of genetic interaction to discover small molecules that functionally interact with human disease alleles.
    Brettman AD; Tan PH; Tran K; Shaw SY
    Methods Mol Biol; 2015; 1263():15-27. PubMed ID: 25618333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in the System Biology-based Target Identification and Drug Discovery.
    Yadav BS; Tripathi V
    Curr Top Med Chem; 2018; 18(20):1737-1744. PubMed ID: 30360719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity.
    Chiang YK; Kuo CC; Wu YS; Chen CT; Coumar MS; Wu JS; Hsieh HP; Chang CY; Jseng HY; Wu MH; Leou JS; Song JS; Chang JY; Lyu PC; Chao YS; Wu SY
    J Med Chem; 2009 Jul; 52(14):4221-33. PubMed ID: 19507860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating yeast chemical genomics and mammalian cell pathway analysis.
    Zhou FL; Li SC; Zhu Y; Guo WJ; Shao LJ; Nelson J; Simpkins S; Yang DH; Liu Q; Yashiroda Y; Xu JB; Fan YY; Yue JM; Yoshida M; Xia T; Myers CL; Boone C; Wang MW
    Acta Pharmacol Sin; 2019 Sep; 40(9):1245-1255. PubMed ID: 31138898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting drug-target interactions through integrative analysis of chemogenetic assays in yeast.
    Heiskanen MA; Aittokallio T
    Mol Biosyst; 2013 Apr; 9(4):768-79. PubMed ID: 23420501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of novel tubulin inhibitors via structure-based hierarchical virtual screening.
    Cao R; Liu M; Yin M; Liu Q; Wang Y; Huang N
    J Chem Inf Model; 2012 Oct; 52(10):2730-40. PubMed ID: 22992059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Baryshnikova A; Costanzo M; Dixon S; Vizeacoumar FJ; Myers CL; Andrews B; Boone C
    Methods Enzymol; 2010; 470():145-79. PubMed ID: 20946810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting protein targets for drug-like compounds using transcriptomics.
    Pabon NA; Xia Y; Estabrooks SK; Ye Z; Herbrand AK; Süß E; Biondi RM; Assimon VA; Gestwicki JE; Brodsky JL; Camacho CJ; Bar-Joseph Z
    PLoS Comput Biol; 2018 Dec; 14(12):e1006651. PubMed ID: 30532261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants.
    Gallegos JE; Adames NR; Rogers MF; Kraikivski P; Ibele A; Nurzynski-Loth K; Kudlow E; Murali TM; Tyson JJ; Peccoud J
    NPJ Syst Biol Appl; 2020 May; 6(1):11. PubMed ID: 32376972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tubulin is a molecular target of the Wnt-activating chemical probe.
    Fukuda Y; Sano O; Kazetani K; Yamamoto K; Iwata H; Matsui J
    BMC Biochem; 2016 May; 17(1):9. PubMed ID: 27207629
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.