BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30376630)

  • 1. Elucidating the Reaction Pathway of Decarboxylation-Assisted Olefination Catalyzed by a Mononuclear Non-Heme Iron Enzyme.
    Yu CP; Tang Y; Cha L; Milikisiyants S; Smirnova TI; Smirnov AI; Guo Y; Chang WC
    J Am Chem Soc; 2018 Nov; 140(45):15190-15193. PubMed ID: 30376630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Investigation of Oxidative Decarboxylation Catalyzed by Two Iron(II)- and 2-Oxoglutarate-Dependent Enzymes.
    Huang JL; Tang Y; Yu CP; Sanyal D; Jia X; Liu X; Guo Y; Chang WC
    Biochemistry; 2018 Mar; 57(12):1838-1841. PubMed ID: 29485871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the oxidation of alkenes by non-heme iron enzyme mimics.
    Barry SM; Mueller-Bunz H; Rutledge PJ
    Org Biomol Chem; 2012 Sep; 10(36):7372-81. PubMed ID: 22858835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrene Transfer Catalyzed by a Non-Heme Iron Enzyme and Enhanced by Non-Native Small-Molecule Ligands.
    Goldberg NW; Knight AM; Zhang RK; Arnold FH
    J Am Chem Soc; 2019 Dec; 141(50):19585-19588. PubMed ID: 31790588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction Mechanism of a Nonheme Iron Enzyme Catalyzed Oxidative Cyclization via C-C Bond Formation.
    Chang WC; Yang ZJ; Tu YH; Chien TC
    Org Lett; 2019 Jan; 21(1):228-232. PubMed ID: 30550285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Methyldehydrofosmidomycin Maturation: Use Olefination to Enable Chain Elongation.
    Li X; Xue S; Guo Y; Chang WC
    J Am Chem Soc; 2022 May; 144(18):8257-8266. PubMed ID: 35482829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Nitrosation Mechanism Catalyzed by Non-heme Iron-Containing Enzyme SznF Involving Intramolecular Oxidative Rearrangement.
    Wang J; Wang X; Ouyang Q; Liu W; Shan J; Tan H; Li X; Chen G
    Inorg Chem; 2021 Jun; 60(11):7719-7731. PubMed ID: 34004115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions.
    Wang B; Lee YM; Clémancey M; Seo MS; Sarangi R; Latour JM; Nam W
    J Am Chem Soc; 2016 Feb; 138(7):2426-36. PubMed ID: 26816269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoenzymatic
    Doyon TJ; Perkins JC; Baker Dockrey SA; Romero EO; Skinner KC; Zimmerman PM; Narayan ARH
    J Am Chem Soc; 2019 Dec; 141(51):20269-20277. PubMed ID: 31840992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis.
    Song H; Naowarojna N; Cheng R; Lopez J; Liu P
    Adv Protein Chem Struct Biol; 2019; 117():1-61. PubMed ID: 31564305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron catalyzed competitive olefin oxidation and ipso-hydroxylation of benzoic acids: further evidence for an Fe(V)═O oxidant.
    Das P; Que L
    Inorg Chem; 2010 Oct; 49(20):9479-85. PubMed ID: 20866083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis.
    Abe I
    Chem Pharm Bull (Tokyo); 2020; 68(9):823-831. PubMed ID: 32879222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic strategy for carbon-carbon bond scission by the cytochrome P450 OleT.
    Grant JL; Mitchell ME; Makris TM
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10049-54. PubMed ID: 27555591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid density functional study of O-O bond cleavage and phenyl ring hydroxylation for a biomimetic non-heme iron complex.
    Borowski T; Bassan A; Siegbahn PE
    Inorg Chem; 2004 May; 43(10):3277-91. PubMed ID: 15132638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Amine Desaturation of d-Arginine by the Iron(II)- and 2-(Oxo)glutarate-Dependent l-Arginine 3-Hydroxylase, VioC.
    Dunham NP; Mitchell AJ; Del Río Pantoja JM; Krebs C; Bollinger JM; Boal AK
    Biochemistry; 2018 Nov; 57(46):6479-6488. PubMed ID: 30403469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Rieske Non-Heme Iron Oxygenases for the Asymmetric Dihydroxylation of Alkenes.
    Gally C; Nestl BM; Hauer B
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12952-6. PubMed ID: 26351244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity and Stability of (Hetero)Benzylic Alkenes via the Wittig Olefination Reaction.
    Khan A; Sarwar MG; Ali S
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38276579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stenotrophomonas maltophilia OleC-Catalyzed ATP-Dependent Formation of Long-Chain Z-Olefins from 2-Alkyl-3-hydroxyalkanoic Acids.
    Kancharla P; Bonnett SA; Reynolds KA
    Chembiochem; 2016 Aug; 17(15):1426-9. PubMed ID: 27238740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes.
    Martinie RJ; Pollock CJ; Matthews ML; Bollinger JM; Krebs C; Silakov A
    Inorg Chem; 2017 Nov; 56(21):13382-13389. PubMed ID: 28960972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.