These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30376630)

  • 61. Mechanistic Studies of Aziridine Formation Catalyzed by Mononuclear Non-Heme Iron Enzymes.
    Cha L; Paris JC; Zanella B; Spletzer M; Yao A; Guo Y; Chang WC
    J Am Chem Soc; 2023 Mar; 145(11):6240-6246. PubMed ID: 36913534
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fe-Catalyzed C-C Bond Construction from Olefins via Radicals.
    Lo JC; Kim D; Pan CM; Edwards JT; Yabe Y; Gui J; Qin T; Gutiérrez S; Giacoboni J; Smith MW; Holland PL; Baran PS
    J Am Chem Soc; 2017 Feb; 139(6):2484-2503. PubMed ID: 28094980
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Detailed Mechanistic Studies on Palladium-Catalyzed Selective C-H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling.
    Deb A; Hazra A; Peng Q; Paton RS; Maiti D
    J Am Chem Soc; 2017 Jan; 139(2):763-775. PubMed ID: 27997801
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structure-function correlations in oxygen activating non-heme iron enzymes.
    Neidig ML; Solomon EI
    Chem Commun (Camb); 2005 Dec; (47):5843-63. PubMed ID: 16317455
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High conversion of olefins to cis-diols by non-heme iron catalysts and H2O2.
    Ryu JY; Kim J; Costas M; Chen K; Nam W; Que L
    Chem Commun (Camb); 2002 Jun; (12):1288-9. PubMed ID: 12109119
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Palladium-catalyzed aryl C-H olefination with unactivated, aliphatic alkenes.
    Deb A; Bag S; Kancherla R; Maiti D
    J Am Chem Soc; 2014 Oct; 136(39):13602-5. PubMed ID: 25188679
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structure-Based Mechanism for Oxidative Decarboxylation Reactions Mediated by Amino Acids and Heme Propionates in Coproheme Decarboxylase (HemQ).
    Celis AI; Gauss GH; Streit BR; Shisler K; Moraski GC; Rodgers KR; Lukat-Rodgers GS; Peters JW; DuBois JL
    J Am Chem Soc; 2017 Feb; 139(5):1900-1911. PubMed ID: 27936663
    [TBL] [Abstract][Full Text] [Related]  

  • 68. From α-arylation of olefins to acylation with aldehydes: a journey in regiocontrol of the Heck reaction.
    Ruan J; Xiao J
    Acc Chem Res; 2011 Aug; 44(8):614-26. PubMed ID: 21612205
    [TBL] [Abstract][Full Text] [Related]  

  • 69. γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water.
    Bond JQ; Alonso DM; West RM; Dumesic JA
    Langmuir; 2010 Nov; 26(21):16291-8. PubMed ID: 20513157
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Theoretical study of photoinduced epoxidation of olefins catalyzed by ruthenium porphyrin.
    Ishikawa A; Sakaki S
    J Phys Chem A; 2011 May; 115(18):4774-85. PubMed ID: 21495703
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Go it alone: four-electron oxidations by mononuclear non-heme iron enzymes.
    Peck SC; van der Donk WA
    J Biol Inorg Chem; 2017 Apr; 22(2-3):381-394. PubMed ID: 27783267
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Protein effects in non-heme iron enzyme catalysis: insights from multiscale models.
    Proos Vedin N; Lundberg M
    J Biol Inorg Chem; 2016 Sep; 21(5-6):645-57. PubMed ID: 27364958
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Origin of the correlation of the rate constant of substrate hydroxylation by nonheme iron(IV)-oxo complexes with the bond-dissociation energy of the C-H bond of the substrate.
    Latifi R; Bagherzadeh M; de Visser SP
    Chemistry; 2009 Jul; 15(27):6651-62. PubMed ID: 19472231
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A chameleon catalyst for nonheme iron-promoted olefin oxidation.
    Iyer SR; Javadi MM; Feng Y; Hyun MY; Oloo WN; Kim C; Que L
    Chem Commun (Camb); 2014 Nov; 50(89):13777-80. PubMed ID: 25251577
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad.
    Bassan A; Borowski T; Siegbahn PE
    Dalton Trans; 2004 Oct; (20):3153-62. PubMed ID: 15483690
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A non-heme iron protein with heme tendencies: an investigation of the substrate specificity of thymine hydroxylase.
    Thornburg LD; Lai MT; Wishnok JS; Stubbe J
    Biochemistry; 1993 Dec; 32(50):14023-33. PubMed ID: 8268181
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electronic substituent effects on the cleavage specificity of a non-heme Fe(2+)-dependent beta-diketone dioxygenase and their mechanistic implications.
    Straganz GD; Hofer H; Steiner W; Nidetzky B
    J Am Chem Soc; 2004 Oct; 126(39):12202-3. PubMed ID: 15453718
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Redox reactions of the non-heme iron in photosystem II: an EPR spectroscopic study.
    McEvoy JP; Brudvig GW
    Biochemistry; 2008 Dec; 47(50):13394-403. PubMed ID: 19053286
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)-hydroperoxo species is a sluggish oxidant.
    Park MJ; Lee J; Suh Y; Kim J; Nam W
    J Am Chem Soc; 2006 Mar; 128(8):2630-4. PubMed ID: 16492048
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Terminal Olefin Profiles and Phylogenetic Analyses of Olefin Synthases of Diverse Cyanobacterial Species.
    Zhu T; Scalvenzi T; Sassoon N; Lu X; Gugger M
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29728380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.