These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30376710)

  • 1. Characterizing the Molecular Mechanisms for Flipping Charged Peptide Flanking Loops across a Lipid Bilayer.
    Patel SJ; Van Lehn RC
    J Phys Chem B; 2018 Nov; 122(45):10337-10348. PubMed ID: 30376710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Charged Peptide Loop-Flipping across a Lipid Bilayer Using the String Method with Swarms of Trajectories.
    Patel SJ; Van Lehn RC
    J Phys Chem B; 2021 Jun; 125(22):5862-5873. PubMed ID: 34033491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grafting Charged Species to Membrane-Embedded Scaffolds Dramatically Increases the Rate of Bilayer Flipping.
    Van Lehn RC; Alexander-Katz A
    ACS Cent Sci; 2017 Mar; 3(3):186-195. PubMed ID: 28386596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of polar and/or ionizable residues in the core and flanking regions of hydrophobic helices on transmembrane conformation and oligomerization.
    Lew S; Ren J; London E
    Biochemistry; 2000 Aug; 39(32):9632-40. PubMed ID: 10933779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulations of lipid flip-flop in the presence of model transmembrane helices.
    Sapay N; Bennett WF; Tieleman DP
    Biochemistry; 2010 Sep; 49(35):7665-73. PubMed ID: 20666375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers.
    Lazaridis T; Leveritt JM; PeBenito L
    Biochim Biophys Acta; 2014 Sep; 1838(9):2149-59. PubMed ID: 24525075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Hydrophilic Residues and Hydrophobic Length on Flip-Flop Promotion by Transmembrane Peptides.
    Nakao H; Hayashi C; Ikeda K; Saito H; Nagao H; Nakano M
    J Phys Chem B; 2018 Apr; 122(15):4318-4324. PubMed ID: 29589918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of interactions involving ionizable residues flanking membrane-inserted hydrophobic helices upon helix-helix interaction.
    Lew S; Caputo GA; London E
    Biochemistry; 2003 Sep; 42(36):10833-42. PubMed ID: 12962508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.
    Yeagle PL; Bennett M; LemaƮtre V; Watts A
    Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbation of a lipid membrane by amphipathic peptides and its role in pore formation.
    Zemel A; Ben-Shaul A; May S
    Eur Biophys J; 2005 May; 34(3):230-42. PubMed ID: 15619088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of flanking loops on membrane insertion of transmembrane helices: a role for peptide conformational equilibrium.
    Gao J; Chen J
    J Phys Chem B; 2013 Jul; 117(28):8330-9. PubMed ID: 23786317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.
    Ulmschneider JP
    Biophys J; 2017 Jul; 113(1):73-81. PubMed ID: 28700927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case.
    Farrotti A; Bocchinfuso G; Palleschi A; Rosato N; Salnikov ES; Voievoda N; Bechinger B; Stella L
    Biochim Biophys Acta; 2015 Feb; 1848(2):581-92. PubMed ID: 25445672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How transmembrane peptides insert and orientate in biomembranes: a combined experimental and simulation study.
    Yue T; Sun M; Zhang S; Ren H; Ge B; Huang F
    Phys Chem Chem Phys; 2016 Jun; 18(26):17483-94. PubMed ID: 27302083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculations suggest a pathway for the transverse diffusion of a hydrophobic peptide across a lipid bilayer.
    Kessel A; Schulten K; Ben-Tal N
    Biophys J; 2000 Nov; 79(5):2322-30. PubMed ID: 11053112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.