These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 30376770)
1. Impact of setup orientation on blend electrospinning of poly-ε-caprolactone-gelatin scaffolds for vascular tissue engineering. Suresh S; Gryshkov O; Glasmacher B Int J Artif Organs; 2018 Nov; 41(11):801-810. PubMed ID: 30376770 [TBL] [Abstract][Full Text] [Related]
2. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering. Castilho M; Feyen D; Flandes-Iparraguirre M; Hochleitner G; Groll J; Doevendans PAF; Vermonden T; Ito K; Sluijter JPG; Malda J Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28699224 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. Zhang K; Wang H; Huang C; Su Y; Mo X; Ikada Y J Biomed Mater Res A; 2010 Jun; 93(3):984-93. PubMed ID: 19722280 [TBL] [Abstract][Full Text] [Related]
4. Palmatine-loaded electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds accelerate wound healing and inhibit hypertrophic scar formation in a rabbit ear model. Jiang Z; Zhao L; He F; Tan H; Li Y; Tang Y; Duan X; Li Y J Biomater Appl; 2021 Feb; 35(7):869-886. PubMed ID: 32799702 [TBL] [Abstract][Full Text] [Related]
5. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
6. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (ε-caprolactone)/chitosan/poly (ε-caprolactone) scaffolds interactions. Ozkan O; Turkoglu Sasmazel H J Biosci Bioeng; 2016 Aug; 122(2):232-9. PubMed ID: 26906227 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230 [TBL] [Abstract][Full Text] [Related]
8. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. Hwang PT; Murdock K; Alexander GC; Salaam AD; Ng JI; Lim DJ; Dean D; Jun HW J Biomed Mater Res A; 2016 Apr; 104(4):1017-29. PubMed ID: 26567028 [TBL] [Abstract][Full Text] [Related]
9. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Lowery JL; Datta N; Rutledge GC Biomaterials; 2010 Jan; 31(3):491-504. PubMed ID: 19822363 [TBL] [Abstract][Full Text] [Related]
11. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094 [TBL] [Abstract][Full Text] [Related]
12. Gelatin - Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Joy J; Pereira J; Aid-Launais R; Pavon-Djavid G; Ray AR; Letourneur D; Meddahi-Pellé A; Gupta B Int J Biol Macromol; 2018 Feb; 107(Pt B):1922-1935. PubMed ID: 29032216 [TBL] [Abstract][Full Text] [Related]
13. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Fu W; Liu Z; Feng B; Hu R; He X; Wang H; Yin M; Huang H; Zhang H; Wang W Int J Nanomedicine; 2014; 9():2335-44. PubMed ID: 24872696 [TBL] [Abstract][Full Text] [Related]
14. Single-step, acid-based fabrication of homogeneous gelatin-polycaprolactone fibrillar scaffolds intended for skin tissue engineering. Prado-Prone G; Bazzar M; Letizia Focarete M; García-Macedo JA; Perez-Orive J; Ibarra C; Velasquillo C; Silva-Bermudez P Biomed Mater; 2020 Mar; 15(3):035001. PubMed ID: 31899893 [TBL] [Abstract][Full Text] [Related]
16. Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Nadim A; Khorasani SN; Kharaziha M; Davoodi SM Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():47-58. PubMed ID: 28576011 [TBL] [Abstract][Full Text] [Related]
17. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility. Zhijiang C; Qin Z; Xianyou S; Yuanpei L Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():797-806. PubMed ID: 27987775 [TBL] [Abstract][Full Text] [Related]
18. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330 [TBL] [Abstract][Full Text] [Related]
19. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
20. Micropatterning and characterization of electrospun poly(ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Lim YC; Johnson J; Fei Z; Wu Y; Farson DF; Lannutti JJ; Choi HW; Lee LJ Biotechnol Bioeng; 2011 Jan; 108(1):116-26. PubMed ID: 20812254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]