These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3037683)

  • 1. The influence of ispaghula husk and lactulose on the in vivo and the in vitro production capacity of short-chain fatty acids in humans.
    Rasmussen HS; Holtug K; Andersen JR; Krag E; Mortensen PB
    Scand J Gastroenterol; 1987 May; 22(4):406-10. PubMed ID: 3037683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system.
    Vince AJ; McNeil NI; Wager JD; Wrong OM
    Br J Nutr; 1990 Jan; 63(1):17-26. PubMed ID: 2317475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The colon in carbohydrate malabsorption: short-chain fatty acids, pH, and osmotic diarrhoea.
    Holtug K; Clausen MR; Hove H; Christiansen J; Mortensen PB
    Scand J Gastroenterol; 1992 Jul; 27(7):545-52. PubMed ID: 1641581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential water-holding capacity and short-chain fatty acid production from purified fiber sources in a fecal incubation system.
    McBurney MI
    Nutrition; 1991; 7(6):421-4. PubMed ID: 1666322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caecal and faecal short-chain fatty acids and stool output in rats fed on diets containing non-starch polysaccharides.
    Edwards CA; Eastwood MA
    Br J Nutr; 1995 May; 73(5):773-81. PubMed ID: 7626595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-chain fatty acids and the irritable bowel syndrome: the effect of wheat bran.
    Mortensen PB; Andersen JR; Arffmann S; Krag E
    Scand J Gastroenterol; 1987 Mar; 22(2):185-92. PubMed ID: 3033815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of ispaghula on rat caecal fermentation and stool output.
    Edwards CA; Bowen J; Brydon WG; Eastwood MA
    Br J Nutr; 1992 Sep; 68(2):473-82. PubMed ID: 1445826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kiwifruit fibre level influences the predicted production and absorption of SCFA in the hindgut of growing pigs using a combined in vivo-in vitro digestion methodology.
    Montoya CA; Rutherfurd SM; Moughan PJ
    Br J Nutr; 2016 Apr; 115(8):1317-24. PubMed ID: 26277926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation.
    Anguita M; Canibe N; Pérez JF; Jensen BB
    J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of dietary fibre on caecal metabolism in the rat.
    McKay LF; Eastwood MA
    Br J Nutr; 1983 Nov; 50(3):679-84. PubMed ID: 6315053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of human faecal donor on in vitro fermentation variables.
    McBurney MI; Thompson LU
    Scand J Gastroenterol; 1989 Apr; 24(3):359-67. PubMed ID: 2544024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digestibility and bulking effect of ispaghula husks in healthy humans.
    Marteau P; Flourié B; Cherbut C; Corrèze JL; Pellier P; Seylaz J; Rambaud JC
    Gut; 1994 Dec; 35(12):1747-52. PubMed ID: 7829013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ispaghula husk on the faecal output of bile acids in healthy volunteers.
    Chaplin MF; Chaudhury S; Dettmar PW; Sykes J; Shaw AD; Davies GJ
    J Steroid Biochem Mol Biol; 2000 Apr; 72(5):283-92. PubMed ID: 10822018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short chain fatty acids in inflammatory bowel disease. The effect of bacterial fermentation of blood.
    Holtug K; Rasmussen HS; Mortensen PB
    Scand J Clin Lab Invest; 1988 Nov; 48(7):667-71. PubMed ID: 3201099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of tartaric acid and dietary fibre from sun-dried raisins on colonic function and on bile acid and volatile fatty acid excretion in healthy adults.
    Spiller GA; Story JA; Furumoto EJ; Chezem JC; Spiller M
    Br J Nutr; 2003 Oct; 90(4):803-7. PubMed ID: 13129449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the effects of ispaghula and wheat bran on rat caecal and colonic fermentation.
    Edwards CA; Eastwood MA
    Gut; 1992 Sep; 33(9):1229-33. PubMed ID: 1330844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial population dynamics and faecal short-chain fatty acid (SCFA) concentrations in healthy humans.
    McOrist AL; Abell GC; Cooke C; Nyland K
    Br J Nutr; 2008 Jul; 100(1):138-46. PubMed ID: 18205991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colonic fermentation of ispaghula, wheat bran, glucose, and albumin to short-chain fatty acids and ammonia evaluated in vitro in 50 subjects.
    Mortensen PB; Clausen MR; Bonnén H; Hove H; Holtug K
    JPEN J Parenter Enteral Nutr; 1992; 16(5):433-9. PubMed ID: 1331553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of fermentability of acid-treated maize husk by rat caecal bacteria in vivo and in vitro.
    Hara H; Saito Y; Nakashima H; Kiriyama S
    Br J Nutr; 1994 May; 71(5):719-29. PubMed ID: 8054327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of dietary fiber fermentation: effect of Lactobacillus reuteri and reproducibility of short-chain fatty acid concentrations.
    Stewart ML; Savarino V; Slavin JL
    Mol Nutr Food Res; 2009 May; 53 Suppl 1():S114-20. PubMed ID: 18837468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.