BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30376844)

  • 1. Nucleotide excision repair is a predictor of early relapse in pediatric acute lymphoblastic leukemia.
    Ibrahim OM; As Sobeai HM; Grant SG; Latimer JJ
    BMC Med Genomics; 2018 Oct; 11(1):95. PubMed ID: 30376844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA microarrays for comparison of gene expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: choice of technique and purification influence the identification of potential diagnostic markers.
    Staal FJ; van der Burg M; Wessels LF; Barendregt BH; Baert MR; van den Burg CM; van Huffel C; Langerak AW; van der Velden VH; Reinders MJ; van Dongen JJ
    Leukemia; 2003 Jul; 17(7):1324-32. PubMed ID: 12835720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis.
    Beishuizen A; Verhoeven MA; van Wering ER; Hählen K; Hooijkaas H; van Dongen JJ
    Blood; 1994 Apr; 83(8):2238-47. PubMed ID: 8161789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of late cell cycle genes and an increased proliferative capacity characterize very early relapse of childhood acute lymphoblastic leukemia.
    Kirschner-Schwabe R; Lottaz C; Tödling J; Rhein P; Karawajew L; Eckert C; von Stackelberg A; Ungethüm U; Kostka D; Kulozik AE; Ludwig WD; Henze G; Spang R; Hagemeier C; Seeger K
    Clin Cancer Res; 2006 Aug; 12(15):4553-61. PubMed ID: 16899601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-analysis of gene expression in relapsed childhood B-acute lymphoblastic leukemia.
    Chow YP; Alias H; Jamal R
    BMC Cancer; 2017 Feb; 17(1):120. PubMed ID: 28183295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Expression Profiling of Acute Lymphoblastic Leukemia in Children with Very Early Relapse.
    Núñez-Enríquez JC; Bárcenas-López DA; Hidalgo-Miranda A; Jiménez-Hernández E; Bekker-Méndez VC; Flores-Lujano J; Solis-Labastida KA; Martínez-Morales GB; Sánchez-Muñoz F; Espinoza-Hernández LE; Velázquez-Aviña MM; Merino-Pasaye LE; García Velázquez AJ; Pérez-Saldívar ML; Mojica-Espinoza R; Ramírez-Bello J; Jiménez-Morales S; Mejía-Aranguré JM;
    Arch Med Res; 2016 Nov; 47(8):644-655. PubMed ID: 28476192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late relapsing childhood lymphoblastic leukemia.
    Vora A; Frost L; Goodeve A; Wilson G; Ireland RM; Lilleyman J; Eden T; Peake I; Richards S
    Blood; 1998 Oct; 92(7):2334-7. PubMed ID: 9746771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outcome of Reinduction Chemotherapy with a Modified Dose of Idarubicin for Children with Marrow-Relapsed Acute Lymphoblastic Leukemia: Results of the Childhood Acute Lymphoblastic Leukemia (CALL)-0603 Study.
    Koh KN; Im HJ; Kim H; Kang HJ; Park KD; Shin HY; Ahn HS; Lee JW; Yoo KH; Sung KW; Koo HH; Lim YT; Park JE; Park BK; Park HJ; Seo JJ
    J Korean Med Sci; 2017 Apr; 32(4):642-649. PubMed ID: 28244291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA damage response in patients with pediatric Acute Lymphoid Leukemia during induction therapy.
    Portich JP; Dos Santos RP; Kersting N; Jorge KB; Casagrande PR; Dos Santos Costa G; Dias Cionek JM; Olguins DB; Sinigaglia M; Busatto FF; Saffi J; Maluf SW; Loss JF; Brunetto AL; Roesler R; de Farias CB
    Leuk Res; 2017 Mar; 54():59-65. PubMed ID: 28109975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2.
    Flotho C; Coustan-Smith E; Pei D; Iwamoto S; Song G; Cheng C; Pui CH; Downing JR; Campana D
    Blood; 2006 Aug; 108(3):1050-7. PubMed ID: 16627760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation by RQ-PCR and flow cytometry of alpha-defensin1-3 (DEFA1-3) overexpression in relapsed and refractory acute lymphoblastic leukemia.
    Te Kronnie G; Bicciato S; Franceschini L; Accordi B; Dellíorto MC; Rinaldi A; Pession A; Barisone E; Conter V; Locatelli F; Basso G
    Oncol Rep; 2006 Feb; 15(2):341-6. PubMed ID: 16391852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relapse of acute lymphoblastic leukemia in children in the context of microarray analyses.
    Szczepanek J; Styczyński J; Haus O; Tretyn A; Wysocki M
    Arch Immunol Ther Exp (Warsz); 2011 Feb; 59(1):61-8. PubMed ID: 21246408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes.
    Lindqvist CM; Lundmark A; Nordlund J; Freyhult E; Ekman D; Carlsson Almlöf J; Raine A; Övernäs E; Abrahamsson J; Frost BM; Grandér D; Heyman M; Palle J; Forestier E; Lönnerholm G; Berglund EC; Syvänen AC
    Oncotarget; 2016 Sep; 7(39):64071-64088. PubMed ID: 27590521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wiskott Aldrich syndrome protein (WASp)-deficient Th1 cells promote R-loop-driven transcriptional insufficiency and transcription-coupled nucleotide excision repair factor (TC-NER)-driven genome-instability in the pathogenesis of T cell acute lymphoblastic leukemia.
    R P; Rakshit S; Shanmugam G; George M; Sarkar K
    Clin Immunol; 2024 Jun; 263():110204. PubMed ID: 38582251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gene expression signature of relapse in paediatric acute lymphoblastic leukaemia: implications for mechanisms of therapy failure.
    Beesley AH; Cummings AJ; Freitas JR; Hoffmann K; Firth MJ; Ford J; de Klerk NH; Kees UR
    Br J Haematol; 2005 Nov; 131(4):447-56. PubMed ID: 16281934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of immunophenotype, treatment response, and relapse in childhood acute lymphoblastic leukemia using DNA microarrays.
    Willenbrock H; Juncker AS; Schmiegelow K; Knudsen S; Ryder LP
    Leukemia; 2004 Jul; 18(7):1270-7. PubMed ID: 15152267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype.
    Staal FJ; de Ridder D; Szczepanski T; Schonewille T; van der Linden EC; van Wering ER; van der Velden VH; van Dongen JJ
    Leukemia; 2010 Mar; 24(3):491-9. PubMed ID: 20072147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A set of miRNAs that involve in the pathways of drug resistance and leukemic stem-cell differentiation is associated with the risk of relapse and glucocorticoid response in childhood ALL.
    Han BW; Feng DD; Li ZG; Luo XQ; Zhang H; Li XJ; Zhang XJ; Zheng LL; Zeng CW; Lin KY; Zhang P; Xu L; Chen YQ
    Hum Mol Genet; 2011 Dec; 20(24):4903-15. PubMed ID: 21926415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relapse of TEL-AML1--positive acute lymphoblastic leukemia in childhood: a matched-pair analysis.
    Seeger K; von Stackelberg A; Taube T; Buchwald D; Körner G; Suttorp M; Dörffel W; Tausch W; Henze G
    J Clin Oncol; 2001 Jul; 19(13):3188-93. PubMed ID: 11432885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged persistence of PCR-detectable minimal residual disease after diagnosis or first relapse predicts poor outcome in childhood B-precursor acute lymphoblastic leukemia.
    Steenbergen EJ; Verhagen OJ; van Leeuwen EF; van den Berg H; Behrendt H; Slater RM; von dem Borne AE; van der Schoot CE
    Leukemia; 1995 Oct; 9(10):1726-34. PubMed ID: 7564517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.