These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
650 related articles for article (PubMed ID: 30377057)
21. Multi-institutional validation of a radiomics signature for identification of postoperative progression of soft tissue sarcoma. Yu Y; Guo H; Zhang M; Hou F; Yang S; Huang C; Duan L; Wang H Cancer Imaging; 2024 May; 24(1):59. PubMed ID: 38720384 [TBL] [Abstract][Full Text] [Related]
22. Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs. Gao Y; Kalbasi A; Hsu W; Ruan D; Fu J; Shao J; Cao M; Wang C; Eilber FC; Bernthal N; Bukata S; Dry SM; Nelson SD; Kamrava M; Lewis J; Low DA; Steinberg M; Hu P; Yang Y Phys Med Biol; 2020 Aug; 65(17):175006. PubMed ID: 32554891 [TBL] [Abstract][Full Text] [Related]
24. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. Tan Y; Zhang ST; Wei JW; Dong D; Wang XC; Yang GQ; Tian J; Zhang H Eur Radiol; 2019 Jul; 29(7):3325-3337. PubMed ID: 30972543 [TBL] [Abstract][Full Text] [Related]
25. Radiomics nomogram for differentiating between benign and malignant soft-tissue masses of the extremities. Wang H; Nie P; Wang Y; Xu W; Duan S; Chen H; Hao D; Liu J J Magn Reson Imaging; 2020 Jan; 51(1):155-163. PubMed ID: 31169956 [TBL] [Abstract][Full Text] [Related]
26. Added value of diffusion-weighted imaging to conventional MRI for predicting fascial involvement of soft tissue sarcomas. Yoon MA; Chee CG; Chung HW; Song JS; Lee JS; Kim W; Lee MH; Lee SH; Shin MJ Eur Radiol; 2019 Apr; 29(4):1863-1873. PubMed ID: 30324391 [TBL] [Abstract][Full Text] [Related]
27. MRI Fat-Saturated T2-Weighted Radiomics Model for Identifying the Ki-67 Index of Soft Tissue Sarcomas. Yang Y; Zhang L; Wang T; Jiang Z; Li Q; Wu Y; Cai Z; Chen X J Magn Reson Imaging; 2023 Aug; 58(2):534-545. PubMed ID: 36326136 [TBL] [Abstract][Full Text] [Related]
28. Prediction of histopathologic grades of myxofibrosarcoma with radiomics based on magnetic resonance imaging. Yao Y; Zhao Y; Lu L; Zhao Y; Lin X; Xia J; Zheng X; Shen Y; Cai Z; Li Y; Yang Z; Lin D J Cancer Res Clin Oncol; 2023 Sep; 149(12):10169-10179. PubMed ID: 37264266 [TBL] [Abstract][Full Text] [Related]
29. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. Zhang X; Xu X; Tian Q; Li B; Wu Y; Yang Z; Liang Z; Liu Y; Cui G; Lu H J Magn Reson Imaging; 2017 Nov; 46(5):1281-1288. PubMed ID: 28199039 [TBL] [Abstract][Full Text] [Related]
30. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043 [TBL] [Abstract][Full Text] [Related]
31. Preoperative MRI-Based Radiomic Machine-Learning Nomogram May Accurately Distinguish Between Benign and Malignant Soft-Tissue Lesions: A Two-Center Study. Wang H; Zhang J; Bao S; Liu J; Hou F; Huang Y; Chen H; Duan S; Hao D; Liu J J Magn Reson Imaging; 2020 Sep; 52(3):873-882. PubMed ID: 32112598 [TBL] [Abstract][Full Text] [Related]
33. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
34. MRI-Based Radiomics Signature for the Preoperative Prediction of Extracapsular Extension of Prostate Cancer. Ma S; Xie H; Wang H; Han C; Yang J; Lin Z; Li Y; He Q; Wang R; Cui Y; Zhang X; Wang X J Magn Reson Imaging; 2019 Dec; 50(6):1914-1925. PubMed ID: 31062459 [TBL] [Abstract][Full Text] [Related]
35. Predicting Histopathological Grading of Adult Gliomas Based On Preoperative Conventional Multimodal MRI Radiomics: A Machine Learning Model. Du P; Liu X; Wu X; Chen J; Cao A; Geng D Brain Sci; 2023 Jun; 13(6):. PubMed ID: 37371390 [TBL] [Abstract][Full Text] [Related]
36. Soft-Tissue Sarcomas: Assessment of MRI Features Correlating with Histologic Grade and Patient Outcome. Crombé A; Marcellin PJ; Buy X; Stoeckle E; Brouste V; Italiano A; Le Loarer F; Kind M Radiology; 2019 Jun; 291(3):710-721. PubMed ID: 30964422 [TBL] [Abstract][Full Text] [Related]
37. Natural Changes in Radiological and Radiomics Features on MRIs of Soft-Tissue Sarcomas Naïve of Treatment: Correlations With Histology and Patients' Outcomes. Fadli D; Kind M; Michot A; Le Loarer F; Crombé A J Magn Reson Imaging; 2022 Jul; 56(1):77-96. PubMed ID: 34939705 [TBL] [Abstract][Full Text] [Related]
38. Development of MRI-Based Radiomics Model to Predict the Risk of Recurrence in Patients With Advanced High-Grade Serous Ovarian Carcinoma. Li HM; Gong J; Li RM; Xiao ZB; Qiang JW; Peng WJ; Gu YJ AJR Am J Roentgenol; 2021 Sep; 217(3):664-675. PubMed ID: 34259544 [No Abstract] [Full Text] [Related]
39. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas. Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598 [TBL] [Abstract][Full Text] [Related]
40. CT-based radiomic features predict tumor grading and have prognostic value in patients with soft tissue sarcomas treated with neoadjuvant radiation therapy. Peeken JC; Bernhofer M; Spraker MB; Pfeiffer D; Devecka M; Thamer A; Shouman MA; Ott A; Nüsslin F; Mayr NA; Rost B; Nyflot MJ; Combs SE Radiother Oncol; 2019 Jun; 135():187-196. PubMed ID: 30961895 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]