These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 30377352)

  • 1. Cellular barcoding: lineage tracing, screening and beyond.
    Kebschull JM; Zador AM
    Nat Methods; 2018 Nov; 15(11):871-879. PubMed ID: 30377352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clonal tracking using embedded viral barcoding and high-throughput sequencing.
    Bramlett C; Jiang D; Nogalska A; Eerdeng J; Contreras J; Lu R
    Nat Protoc; 2020 Apr; 15(4):1436-1458. PubMed ID: 32132718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond genome sequencing: lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer.
    Blundell JR; Levy SF
    Genomics; 2014 Dec; 104(6 Pt A):417-30. PubMed ID: 25260907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clonal Analysis of Cells with Cellular Barcoding: When Numbers and Sizes Matter.
    Bystrykh LV; Belderbos ME
    Methods Mol Biol; 2016; 1516():57-89. PubMed ID: 27044044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of synthetic cellular barcodes in the genome and transcriptome with BARtab and bartools.
    Holze H; Talarmain L; Fennell KA; Lam EY; Dawson MA; Vassiliadis D
    Cell Rep Methods; 2024 May; 4(5):100763. PubMed ID: 38670101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding.
    Lu R; Neff NF; Quake SR; Weissman IL
    Nat Biotechnol; 2011 Oct; 29(10):928-33. PubMed ID: 21964413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput dense reconstruction of cell lineages.
    Espinosa-Medina I; Garcia-Marques J; Cepko C; Lee T
    Open Biol; 2019 Dec; 9(12):190229. PubMed ID: 31822210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of Synthetic Cell Lineage Tracing Using Nuclease Barcoding.
    Schmidt ST; Zimmerman SM; Wang J; Kim SK; Quake SR
    ACS Synth Biol; 2017 Jun; 6(6):936-942. PubMed ID: 28264564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Tracking of Hematopoietic Stem and Progenitor Cell Ontogeny by Cellular Barcoding.
    Tak T; Eisele AS; Perié L
    Methods Mol Biol; 2021; 2308():281-300. PubMed ID: 34057730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo.
    Pei W; Feyerabend TB; Rössler J; Wang X; Postrach D; Busch K; Rode I; Klapproth K; Dietlein N; Quedenau C; Chen W; Sauer S; Wolf S; Höfer T; Rodewald HR
    Nature; 2017 Aug; 548(7668):456-460. PubMed ID: 28813413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage tracing meets single-cell omics: opportunities and challenges.
    Wagner DE; Klein AM
    Nat Rev Genet; 2020 Jul; 21(7):410-427. PubMed ID: 32235876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet barcoding for massively parallel single-molecule deep sequencing.
    Lan F; Haliburton JR; Yuan A; Abate AR
    Nat Commun; 2016 Jun; 7():11784. PubMed ID: 27353563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice.
    Pei W; Wang X; Rössler J; Feyerabend TB; Höfer T; Rodewald HR
    Nat Protoc; 2019 Jun; 14(6):1820-1840. PubMed ID: 31110297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular barcoding: a technical appraisal.
    Naik SH; Schumacher TN; Perié L
    Exp Hematol; 2014 Aug; 42(8):598-608. PubMed ID: 24996012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducibility of Illumina platform deep sequencing errors allows accurate determination of DNA barcodes in cells.
    Beltman JB; Urbanus J; Velds A; van Rooij N; Rohr JC; Naik SH; Schumacher TN
    BMC Bioinformatics; 2016 Apr; 17():151. PubMed ID: 27038897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-learning-optimized Cas12a barcoding enables the recovery of single-cell lineages and transcriptional profiles.
    Hughes NW; Qu Y; Zhang J; Tang W; Pierce J; Wang C; Agrawal A; Morri M; Neff N; Winslow MM; Wang M; Cong L
    Mol Cell; 2022 Aug; 82(16):3103-3118.e8. PubMed ID: 35752172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Best Practices in Designing, Sequencing, and Identifying Random DNA Barcodes.
    Johnson MS; Venkataram S; Kryazhimskiy S
    J Mol Evol; 2023 Jun; 91(3):263-280. PubMed ID: 36651964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleic Acid-Barcoding Technologies: Converting DNA Sequencing into a Broad-Spectrum Molecular Counter.
    Liszczak G; Muir TW
    Angew Chem Int Ed Engl; 2019 Mar; 58(13):4144-4162. PubMed ID: 30153374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrayed in vivo barcoding for multiplexed sequence verification of plasmid DNA and demultiplexing of pooled libraries.
    Li W; Miller D; Liu X; Tosi L; Chkaiban L; Mei H; Hung PH; Parekkadan B; Sherlock G; Levy SF
    Nucleic Acids Res; 2024 Jun; 52(10):e47. PubMed ID: 38709890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertion and deletion correcting DNA barcodes based on watermarks.
    Kracht D; Schober S
    BMC Bioinformatics; 2015 Feb; 16():50. PubMed ID: 25887410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.