BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 30377362)

  • 1. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9.
    Bubeck F; Hoffmann MD; Harteveld Z; Aschenbrenner S; Bietz A; Waldhauer MC; Börner K; Fakhiri J; Schmelas C; Dietz L; Grimm D; Correia BE; Eils R; Niopek D
    Nat Methods; 2018 Nov; 15(11):924-927. PubMed ID: 30377362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein.
    Hoffmann MD; Mathony J; Upmeier Zu Belzen J; Harteveld Z; Aschenbrenner S; Stengl C; Grimm D; Correia BE; Eils R; Niopek D
    Nucleic Acids Res; 2021 Mar; 49(5):e29. PubMed ID: 33330940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.
    Zhou XX; Zou X; Chung HK; Gao Y; Liu Y; Qi LS; Lin MZ
    ACS Chem Biol; 2018 Feb; 13(2):443-448. PubMed ID: 28938067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
    Dong D; Guo M; Wang S; Zhu Y; Wang S; Xiong Z; Yang J; Xu Z; Huang Z
    Nature; 2017 Jun; 546(7658):436-439. PubMed ID: 28448066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of anti-CRISPR protein AcrIIA4 as a capture ligand for CRISPR/Cas9 detection.
    Johnston RK; Seamon KJ; Saada EA; Podlevsky JD; Branda SS; Timlin JA; Harper JC
    Biosens Bioelectron; 2019 Sep; 141():111361. PubMed ID: 31207570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoactivatable CRISPR-Cas9 for optogenetic genome editing.
    Nihongaki Y; Kawano F; Nakajima T; Sato M
    Nat Biotechnol; 2015 Jul; 33(7):755-60. PubMed ID: 26076431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetics and CRISPR: A New Relationship Built to Last.
    Mathony J; Hoffmann MD; Niopek D
    Methods Mol Biol; 2020; 2173():261-281. PubMed ID: 32651924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins.
    Hoffmann MD; Aschenbrenner S; Grosse S; Rapti K; Domenger C; Fakhiri J; Mastel M; Börner K; Eils R; Grimm D; Niopek D
    Nucleic Acids Res; 2019 Jul; 47(13):e75. PubMed ID: 30982889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.
    Polstein LR; Gersbach CA
    Nat Chem Biol; 2015 Mar; 11(3):198-200. PubMed ID: 25664691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheostatic Control of Cas9-Mediated DNA Double Strand Break (DSB) Generation and Genome Editing.
    Rose JC; Stephany JJ; Wei CT; Fowler DM; Maly DJ
    ACS Chem Biol; 2018 Feb; 13(2):438-442. PubMed ID: 28895730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Manipulating Living Systems by Light].
    Sato M
    Yakugaku Zasshi; 2020; 140(8):993-1000. PubMed ID: 32741873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein engineering of Cas9 for enhanced function.
    Oakes BL; Nadler DC; Savage DF
    Methods Enzymol; 2014; 546():491-511. PubMed ID: 25398355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing.
    Chen X; Chen Y; Xin H; Wan T; Ping Y
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2395-2405. PubMed ID: 31941712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-CRISPR AcrIIA5 Potently Inhibits All Cas9 Homologs Used for Genome Editing.
    Garcia B; Lee J; Edraki A; Hidalgo-Reyes Y; Erwood S; Mir A; Trost CN; Seroussi U; Stanley SY; Cohn RD; Claycomb JM; Sontheimer EJ; Maxwell KL; Davidson AR
    Cell Rep; 2019 Nov; 29(7):1739-1746.e5. PubMed ID: 31722192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond Native Cas9: Manipulating Genomic Information and Function.
    Mitsunobu H; Teramoto J; Nishida K; Kondo A
    Trends Biotechnol; 2017 Oct; 35(10):983-996. PubMed ID: 28739220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing targeted DNA methylation and demethylation using dCas9.
    Pflueger C; Swain T; Lister R
    Essays Biochem; 2019 Dec; 63(6):813-825. PubMed ID: 31724704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.