These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 30377623)
1. Water scarcity assessments in the past, present and future. Liu J; Yang H; Gosling SN; Kummu M; Flörke M; Pfister S; Hanasaki N; Wada Y; Zhang X; Zheng C; Alcamo J; Oki T Earths Future; 2017 Jun; 5(6):545-559. PubMed ID: 30377623 [TBL] [Abstract][Full Text] [Related]
2. The measurement of water scarcity: Defining a meaningful indicator. Damkjaer S; Taylor R Ambio; 2017 Sep; 46(5):513-531. PubMed ID: 28299747 [TBL] [Abstract][Full Text] [Related]
3. Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator. Veettil AV; Mishra AK J Environ Manage; 2018 Dec; 228():346-362. PubMed ID: 30241040 [TBL] [Abstract][Full Text] [Related]
4. Advancing water footprint assessments: Combining the impacts of water pollution and scarcity. Pierrat É; Laurent A; Dorber M; Rygaard M; Verones F; Hauschild M Sci Total Environ; 2023 Apr; 870():161910. PubMed ID: 36736405 [TBL] [Abstract][Full Text] [Related]
5. Four billion people facing severe water scarcity. Mekonnen MM; Hoekstra AY Sci Adv; 2016 Feb; 2(2):e1500323. PubMed ID: 26933676 [TBL] [Abstract][Full Text] [Related]
6. Towards integrated assessments of water risks in deglaciating mountain areas: water scarcity and GLOF risk in the Peruvian Andes. Motschmann A; Huggel C; Muñoz R; Thür A Geoenvironmental Disasters; 2020; 7(1):26. PubMed ID: 33184601 [TBL] [Abstract][Full Text] [Related]
7. Water footprint of nations amplified by scarcity in the Belt and Road Initiative. Fang K; He J; Liu Q; Wang S; Geng Y; Heijungs R; Du Y; Yue W; Xu A; Fang C Heliyon; 2023 Jan; 9(1):e12957. PubMed ID: 36820172 [TBL] [Abstract][Full Text] [Related]
8. Capping Human Water Footprints in the World's River Basins. Hogeboom RJ; de Bruin D; Schyns JF; Krol MS; Hoekstra AY Earths Future; 2020 Feb; 8(2):e2019EF001363. PubMed ID: 32715009 [TBL] [Abstract][Full Text] [Related]
9. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Ingrao C; Strippoli R; Lagioia G; Huisingh D Heliyon; 2023 Aug; 9(8):e18507. PubMed ID: 37534016 [TBL] [Abstract][Full Text] [Related]
10. Water quality management could halve future water scarcity cost-effectively in the Pearl River Basin. Baccour S; Goelema G; Kahil T; Albiac J; van Vliet MTH; Zhu X; Strokal M Nat Commun; 2024 Jul; 15(1):5669. PubMed ID: 38971836 [TBL] [Abstract][Full Text] [Related]
11. Growing water scarcity in agriculture: future challenge to global water security. Falkenmark M Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2002):20120410. PubMed ID: 24080619 [TBL] [Abstract][Full Text] [Related]
12. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Xinchun C; Mengyang W; Xiangping G; Yalian Z; Yan G; Nan W; Weiguang W Sci Total Environ; 2017 Dec; 609():587-597. PubMed ID: 28763656 [TBL] [Abstract][Full Text] [Related]
13. Environmental and socio-economic methodologies and solutions towards integrated water resources management. Friesen J; Rodriguez Sinobas L; Foglia L; Ludwig R Sci Total Environ; 2017 Mar; 581-582():906-908. PubMed ID: 27989478 [TBL] [Abstract][Full Text] [Related]
14. Virtual water trade patterns in relation to environmental and socioeconomic factors: A case study for Tunisia. Chouchane H; Krol MS; Hoekstra AY Sci Total Environ; 2018 Feb; 613-614():287-297. PubMed ID: 28917167 [TBL] [Abstract][Full Text] [Related]
15. Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation. Nouri H; Stokvis B; Galindo A; Blatchford M; Hoekstra AY Sci Total Environ; 2019 Feb; 653():241-252. PubMed ID: 30412869 [TBL] [Abstract][Full Text] [Related]
16. Improving regional water scarcity footprint characterization factors of an available water remaining (AWARE) method. Kaewmai R; Grant T; Eady S; Mungkalasiri J; Musikavong C Sci Total Environ; 2019 Sep; 681():444-455. PubMed ID: 31128340 [TBL] [Abstract][Full Text] [Related]
17. A characterisation model to address the environmental impact of green water flows for water scarcity footprints. Quinteiro P; Rafael S; Villanueva-Rey P; Ridoutt B; Lopes M; Arroja L; Dias AC Sci Total Environ; 2018 Jun; 626():1210-1218. PubMed ID: 29898528 [TBL] [Abstract][Full Text] [Related]
18. From Water-Use to Water-Scarcity Footprinting in Environmentally Extended Input-Output Analysis. Ridoutt BG; Hadjikakou M; Nolan M; Bryan BA Environ Sci Technol; 2018 Jun; 52(12):6761-6770. PubMed ID: 29775539 [TBL] [Abstract][Full Text] [Related]
19. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008). Zhuo L; Mekonnen MM; Hoekstra AY Water Res; 2016 May; 94():73-85. PubMed ID: 26938494 [TBL] [Abstract][Full Text] [Related]
20. Water footprint scenarios for 2050: a global analysis. Ercin AE; Hoekstra AY Environ Int; 2014 Mar; 64():71-82. PubMed ID: 24374780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]