BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 30377779)

  • 1. The modulation of force steadiness by electrical nerve stimulation applied to the wrist extensors differs for young and older adults.
    Mani D; Feeney DF; Enoka RM
    Eur J Appl Physiol; 2019 Jan; 119(1):301-310. PubMed ID: 30377779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability in common synaptic input to motor neurons modulates both force steadiness and pegboard time in young and older adults.
    Feeney DF; Mani D; Enoka RM
    J Physiol; 2018 Aug; 596(16):3793-3806. PubMed ID: 29882259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical nerve stimulation modulates motor unit activity in contralateral biceps brachii during steady isometric contractions.
    Hamilton LD; Mani D; Almuklass AM; Davis LA; Vieira T; Botter A; Enoka RM
    J Neurophysiol; 2018 Nov; 120(5):2603-2613. PubMed ID: 30156959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wide-pulse-width, high-frequency neuromuscular stimulation: implications for functional electrical stimulation.
    Baldwin ER; Klakowicz PM; Collins DF
    J Appl Physiol (1985); 2006 Jul; 101(1):228-40. PubMed ID: 16627680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular adaptations to wide-pulse high-frequency neuromuscular electrical stimulation training.
    Neyroud D; Gonzalez M; Mueller S; Agostino D; Grosprêtre S; Maffiuletti NA; Kayser B; Place N
    Eur J Appl Physiol; 2019 May; 119(5):1105-1116. PubMed ID: 30778761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue-induced adjustment in antagonist coactivation by old adults during a steadiness task.
    Arellano CJ; Caha D; Hennessey JE; Amiridis IG; Baudry S; Enoka RM
    J Appl Physiol (1985); 2016 May; 120(9):1039-46. PubMed ID: 26846553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features.
    Zhou YX; Wang HP; Bao XL; Lü XY; Wang ZG
    J Neural Eng; 2016 Feb; 13(1):016004. PubMed ID: 26644193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of neuromuscular electrical stimulation and voluntary commands on the spinal reflex excitability of remote limb muscles.
    Kato T; Sasaki A; Yokoyama H; Milosevic M; Nakazawa K
    Exp Brain Res; 2019 Dec; 237(12):3195-3205. PubMed ID: 31602493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults.
    Koseki T; Kudo D; Katagiri N; Nanba S; Nito M; Tanabe S; Yamaguchi T
    BMC Neurosci; 2021 Oct; 22(1):61. PubMed ID: 34645385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term strength training does not change cortical voluntary activation.
    Lee M; Gandevia SC; Carroll TJ
    Med Sci Sports Exerc; 2009 Jul; 41(7):1452-60. PubMed ID: 19516155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuated activation of knee extensor muscles during fast contractions in older men and women.
    Kwon M; Senefeld JW; Hunter SK
    Eur J Appl Physiol; 2020 Oct; 120(10):2289-2299. PubMed ID: 32789699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent changes in motor cortical excitability by electrical stimulation combined with voluntary drive.
    Sugawara K; Yamaguchi T; Tanabe S; Suzuki T; Saito K; Higashi T
    Neuroreport; 2014 Apr; 25(6):404-9. PubMed ID: 24356108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG activity of finger flexor muscles and grip force following low-dose transcutaneous electrical nerve stimulation in healthy adult subjects.
    Kafri M; Zaltsberg N; Dickstein R
    Somatosens Mot Res; 2015; 32(1):1-7. PubMed ID: 25059799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voluntary activation and variability during maximal dynamic contractions with aging.
    Rozand V; Senefeld JW; Hassanlouei H; Hunter SK
    Eur J Appl Physiol; 2017 Dec; 117(12):2493-2507. PubMed ID: 29058113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of enhanced cutaneous sensory input on interlimb strength transfer of the wrist extensors.
    Barss TS; Klarner T; Sun Y; Inouye K; Zehr EP
    Physiol Rep; 2020 Mar; 8(6):e14406. PubMed ID: 32222042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electromyostimulation on knee extensors and flexors strength and steadiness in older adults.
    Bezerra P; Zhou S; Crowley Z; Davie A; Baglin R
    J Mot Behav; 2011; 43(5):413-21. PubMed ID: 21978241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength training reduces force fluctuations during anisometric contractions of the quadriceps femoris muscles in old adults.
    Tracy BL; Byrnes WC; Enoka RM
    J Appl Physiol (1985); 2004 Apr; 96(4):1530-40. PubMed ID: 14565966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromechanical properties of the triceps surae in young and older adults.
    Barber LA; Barrett RS; Gillett JG; Cresswell AG; Lichtwark GA
    Exp Gerontol; 2013 Nov; 48(11):1147-55. PubMed ID: 23886750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory transcutaneous electrical stimulation fails to decrease discomfort associated with neuromuscular electrical stimulation in healthy individuals.
    Laufer Y; Tausher H; Esh R; Ward AR
    Am J Phys Med Rehabil; 2011 May; 90(5):399-406. PubMed ID: 21765256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.