These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 30378044)
1. Spheroid Culture of Human Pancreatic Ductal Cells to Reconstitute Development of Pancreatic Intraepithelial Neoplasia. Lee JJ; Kim SK Methods Mol Biol; 2019; 1882():63-71. PubMed ID: 30378044 [TBL] [Abstract][Full Text] [Related]
2. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Lee J; Snyder ER; Liu Y; Gu X; Wang J; Flowers BM; Kim YJ; Park S; Szot GL; Hruban RH; Longacre TA; Kim SK Nat Commun; 2017 Mar; 8():14686. PubMed ID: 28272465 [TBL] [Abstract][Full Text] [Related]
3. Lineage Tracing of Primary Human Pancreatic Acinar and Ductal Cells for Studying Acinar-to-Ductal Metaplasia. Liu J; Wang P Methods Mol Biol; 2019; 1882():55-62. PubMed ID: 30378043 [TBL] [Abstract][Full Text] [Related]
4. A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes. Inagawa Y; Yamada K; Yugawa T; Ohno S; Hiraoka N; Esaki M; Shibata T; Aoki K; Saya H; Kiyono T Carcinogenesis; 2014 Aug; 35(8):1840-6. PubMed ID: 24858378 [TBL] [Abstract][Full Text] [Related]
5. Organoid-based ex vivo reconstitution of Kras-driven pancreatic ductal carcinogenesis. Matsuura T; Maru Y; Izumiya M; Hoshi D; Kato S; Ochiai M; Hori M; Yamamoto S; Tatsuno K; Imai T; Aburatani H; Nakajima A; Hippo Y Carcinogenesis; 2020 Jun; 41(4):490-501. PubMed ID: 31233118 [TBL] [Abstract][Full Text] [Related]
6. Genetic analyses of isolated high-grade pancreatic intraepithelial neoplasia (HG-PanIN) reveal paucity of alterations in TP53 and SMAD4. Hosoda W; Chianchiano P; Griffin JF; Pittman ME; Brosens LA; Noë M; Yu J; Shindo K; Suenaga M; Rezaee N; Yonescu R; Ning Y; Albores-Saavedra J; Yoshizawa N; Harada K; Yoshizawa A; Hanada K; Yonehara S; Shimizu M; Uehara T; Samra JS; Gill AJ; Wolfgang CL; Goggins MG; Hruban RH; Wood LD J Pathol; 2017 May; 242(1):16-23. PubMed ID: 28188630 [TBL] [Abstract][Full Text] [Related]
7. p16, p21, and p53 proteins play an important role in development of pancreatic intraepithelial neoplastic. Zińczuk J; Zaręba K; Guzińska-Ustymowicz K; Kędra B; Kemona A; Pryczynicz A Ir J Med Sci; 2018 Aug; 187(3):629-637. PubMed ID: 29388054 [TBL] [Abstract][Full Text] [Related]
8. Pancreatic Acinar-to-Ductal Metaplasia and Pancreatic Cancer. Wang L; Xie D; Wei D Methods Mol Biol; 2019; 1882():299-308. PubMed ID: 30378064 [TBL] [Abstract][Full Text] [Related]
9. Genetics and Biology of Pancreatic Ductal Adenocarcinoma. Dunne RF; Hezel AF Hematol Oncol Clin North Am; 2015 Aug; 29(4):595-608. PubMed ID: 26226899 [TBL] [Abstract][Full Text] [Related]
10. Molecular Characteristics of Pancreatic Ductal Adenocarcinomas with High-Grade Pancreatic Intraepithelial Neoplasia (PanIN) Are Different from Those without High-Grade PanIN. Miyazaki T; Ohishi Y; Miyasaka Y; Oda Y; Aishima S; Ozono K; Abe A; Nagai E; Nakamura M; Oda Y Pathobiology; 2017; 84(4):192-201. PubMed ID: 28291966 [TBL] [Abstract][Full Text] [Related]
11. Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Fukushima N; Sato N; Ueki T; Rosty C; Walter KM; Wilentz RE; Yeo CJ; Hruban RH; Goggins M Am J Pathol; 2002 May; 160(5):1573-81. PubMed ID: 12000709 [TBL] [Abstract][Full Text] [Related]
12. The Roles of Frequently Mutated Genes of Pancreatic Cancer in Regulation of Tumor Microenvironment. Sun H; Zhang B; Li H Technol Cancer Res Treat; 2020; 19():1533033820920969. PubMed ID: 32372692 [TBL] [Abstract][Full Text] [Related]
13. Clinical Effect of Driver Mutations of Gu Y; Ji Y; Jiang H; Qiu G Genet Test Mol Biomarkers; 2020 Dec; 24(12):777-788. PubMed ID: 33347393 [No Abstract] [Full Text] [Related]
14. Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer. Oshima M; Okano K; Muraki S; Haba R; Maeba T; Suzuki Y; Yachida S Ann Surg; 2013 Aug; 258(2):336-46. PubMed ID: 23470568 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Biankin AV; Kench JG; Morey AL; Lee CS; Biankin SA; Head DR; Hugh TB; Henshall SM; Sutherland RL Cancer Res; 2001 Dec; 61(24):8830-7. PubMed ID: 11751405 [TBL] [Abstract][Full Text] [Related]
16. Ductal neoplasia of the pancreas: nosologic, clinicopathologic, and biologic aspects. Adsay NV; Basturk O; Cheng JD; Andea AA Semin Radiat Oncol; 2005 Oct; 15(4):254-64. PubMed ID: 16183479 [TBL] [Abstract][Full Text] [Related]
17. Where and when does pancreatic carcinoma start? Lüttges J; Hahn S; Klöppel G Med Klin (Munich); 2004 Apr; 99(4):191-5. PubMed ID: 15085289 [TBL] [Abstract][Full Text] [Related]
18. The biological features of PanIN initiated from oncogenic Kras mutation in genetically engineered mouse models. Shen R; Wang Q; Cheng S; Liu T; Jiang H; Zhu J; Wu Y; Wang L Cancer Lett; 2013 Oct; 339(1):135-43. PubMed ID: 23887057 [TBL] [Abstract][Full Text] [Related]
19. Pancreatic intraepithelial neoplasia in heterotopic pancreas: evidence for the progression model of pancreatic ductal adenocarcinoma. Zhang L; Sanderson SO; Lloyd RV; Smyrk TC Am J Surg Pathol; 2007 Aug; 31(8):1191-5. PubMed ID: 17667542 [TBL] [Abstract][Full Text] [Related]
20. The BRG1/SOX9 axis is critical for acinar cell-derived pancreatic tumorigenesis. Tsuda M; Fukuda A; Roy N; Hiramatsu Y; Leonhardt L; Kakiuchi N; Hoyer K; Ogawa S; Goto N; Ikuta K; Kimura Y; Matsumoto Y; Takada Y; Yoshioka T; Maruno T; Yamaga Y; Kim GE; Akiyama H; Ogawa S; Wright CV; Saur D; Takaori K; Uemoto S; Hebrok M; Chiba T; Seno H J Clin Invest; 2018 Aug; 128(8):3475-3489. PubMed ID: 30010625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]