These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30378350)

  • 1. Characterization of the Cerenkov scatter function: a convolution kernel for Cerenkov light dosimetry.
    Brost E; Watanabe Y
    J Biomed Opt; 2018 Oct; 23(10):1-12. PubMed ID: 30378350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Space-variant deconvolution of Cerenkov light images acquired from a curved surface.
    Brost E; Watanabe Y
    Med Phys; 2019 Sep; 46(9):4021-4036. PubMed ID: 31274192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical note: Generation of a Cerenkov scatter function convolution kernel for a primary proton beam.
    Thompson SA
    J Appl Clin Med Phys; 2020 Dec; 21(12):329-333. PubMed ID: 33124752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical deconvolution formulation for superficial dose distribution measurement by Cerenkov light dosimetry.
    Brost EE; Watanabe Y
    Med Phys; 2018 Jun; ():. PubMed ID: 29856473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage x-ray beam.
    Zhang R; Glaser AK; Gladstone DJ; Fox CJ; Pogue BW
    Med Phys; 2013 Oct; 40(10):101914. PubMed ID: 24089916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The visible signal responsible for proton therapy dosimetry using bare optical fibers is not Čerenkov radiation.
    Darafsheh A; Taleei R; Kassaee A; Finlay JC
    Med Phys; 2016 Nov; 43(11):5973. PubMed ID: 27806617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry.
    Jang KW; Yagi T; Pyeon CH; Yoo WJ; Shin SH; Jeong C; Min BJ; Shin D; Misawa T; Lee B
    J Biomed Opt; 2013 Feb; 18(2):27001. PubMed ID: 23377008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms.
    Zhang R; Fox CJ; Glaser AK; Gladstone DJ; Pogue BW
    Phys Med Biol; 2013 Aug; 58(16):5477-93. PubMed ID: 23880473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pencil beam approach for correcting the energy dependence artifact in film dosimetry for IMRT verification.
    Kirov AS; Caravelli G; Palm A; Chui C; LoSasso T
    Med Phys; 2006 Oct; 33(10):3690-9. PubMed ID: 17089835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quenching-free fluorescence signal from plastic-fibres in proton dosimetry: understanding the influence of Čerenkov radiation.
    Brage Christensen J; Almhagen E; Nyström H; Andersen CE
    Phys Med Biol; 2018 Mar; 63(6):065001. PubMed ID: 29446760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon scatter in portal images: accuracy of a fluence based pencil beam superposition algorithm.
    McCurdy BM; Pistorius S
    Med Phys; 2000 May; 27(5):913-22. PubMed ID: 10841394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of dose in radionuclide therapy by using Cerenkov radiation.
    Ai Y; Tang X; Shu D; Shao W; Gong C; Geng C; Zhang X; Yu H
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):695-705. PubMed ID: 28808904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo modeling of the influence of strong magnetic fields on the stem-effect in plastic scintillation detectors used in radiotherapy dosimetry.
    Simiele E; Viscariello N; DeWerd L
    Med Phys; 2021 Mar; 48(3):1381-1394. PubMed ID: 33283279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence.
    Axelsson J; Davis SC; Gladstone DJ; Pogue BW
    Med Phys; 2011 Jul; 38(7):4127-32. PubMed ID: 21859013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.
    Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW
    Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Cerenkov-scintillation detector validation using Monte Carlo simulations.
    Jean E; Lambert-Girard S; Therriault-Proulx F; Beaulieu L
    Phys Med Biol; 2022 Dec; 68(1):. PubMed ID: 36541552
    [No Abstract]   [Full Text] [Related]  

  • 18. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set.
    Keall PJ; Siebers JV; Libby B; Mohan R
    Med Phys; 2003 Apr; 30(4):574-82. PubMed ID: 12722809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The physics of Cerenkov light production during proton therapy.
    Helo Y; Kacperek A; Rosenberg I; Royle G; Gibson AP
    Phys Med Biol; 2014 Dec; 59(23):7107-23. PubMed ID: 25365447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Compton-scatter imaging with an analytical simulation method.
    Jones KC; Redler G; Templeton A; Bernard D; Turian JV; Chu JCH
    Phys Med Biol; 2018 Jan; 63(2):025016. PubMed ID: 29243663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.