BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30378580)

  • 1. Computer simulations of X-ray spherical wave dynamical diffraction in one and two crystals in the Laue case.
    Kohn VG; Smirnova IA
    Acta Crystallogr A Found Adv; 2018 Nov; 74(Pt 6):699-704. PubMed ID: 30378580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrometer for hard X-ray free-electron laser based on diffraction focusing.
    Kohn VG; Gorobtsov OY; Vartanyants IA
    J Synchrotron Radiat; 2013 Mar; 20(Pt 2):258-65. PubMed ID: 23412482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy flow of Bloch waves in X-ray dynamical diffraction in the Laue case for perfect crystals.
    Saka T
    Acta Crystallogr A Found Adv; 2018 Sep; 74(Pt 5):578-585. PubMed ID: 30182944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bent perfect crystals as X-ray focusing polychromators in symmetric Laue geometry.
    Guigay JP; Ferrero C; Bhattacharyya D; Mathon O; Pascarelli S
    Acta Crystallogr A; 2013 Jan; 69(Pt 1):91-7. PubMed ID: 23250065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New kind of interference in the case of X-ray Laue diffraction in a single crystal with uneven exit surface under the conditions of the Borrmann effect. Analytical solution.
    Kohn VG; Smirnova IA
    Acta Crystallogr A Found Adv; 2020 May; 76(Pt 3):421-428. PubMed ID: 32356792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An accurate theory of X-ray coplanar multiple SRMS diffractometry.
    Kohn VG
    Acta Crystallogr A Found Adv; 2018 Nov; 74(Pt 6):673-680. PubMed ID: 30378578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-slit dynamical diffraction of X-rays in ideal crystals (Laue case).
    Balyan MK
    Acta Crystallogr A; 2010 Nov; 66(Pt 6):660-8. PubMed ID: 20962375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray focusing by bent crystals: focal positions as predicted by the crystal lens equation and the dynamical diffraction theory.
    Guigay JP; Sanchez Del Rio M
    J Synchrotron Radiat; 2022 Jan; 29(Pt 1):148-158. PubMed ID: 34985432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rocking curve and spatial coherence properties of a long X-ray compound refractive lens.
    Kohn VG
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1634-1641. PubMed ID: 30407172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective aperture of X-ray compound refractive lenses.
    Kohn VG
    J Synchrotron Radiat; 2017 May; 24(Pt 3):609-614. PubMed ID: 28452752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. I.
    Kohn VG; Khikhlukha DR
    Acta Crystallogr A Found Adv; 2016 May; 72(Pt 3):349-56. PubMed ID: 27126111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffraction in superabsorbing crystals: absorption intrinsic width.
    Lima ANC; Miranda MAR; Sasaki JM
    Acta Crystallogr A Found Adv; 2019 Sep; 75(Pt 5):772-776. PubMed ID: 31475921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.
    Abboud A; Kirchlechner C; Keckes J; Conka Nurdan T; Send S; Micha JS; Ulrich O; Hartmann R; Strüder L; Pietsch U
    J Appl Crystallogr; 2017 Jun; 50(Pt 3):901-908. PubMed ID: 28656042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of X-ray beam nanofocusing with compound refractive lenses.
    Kohn VG; Folomeshkin MS
    J Synchrotron Radiat; 2021 Mar; 28(Pt 2):419-428. PubMed ID: 33650553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray focusing by the system of refractive lens(es) placed inside asymmetric channel-cut crystals.
    Grigoryan AH; Balyan MK; Toneyan AH
    J Synchrotron Radiat; 2010 May; 17(3):332-47. PubMed ID: 20400831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A note on X-ray spherical wavefields in the Laue case for perfect crystals.
    Saka T
    Acta Crystallogr A Found Adv; 2017 Nov; 73(Pt 6):474-479. PubMed ID: 29072200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy resolution of the CdTe-XPAD detector: calibration and potential for Laue diffraction measurements on protein crystals.
    Medjoubi K; Thompson A; Bérar JF; Clemens JC; Delpierre P; Da Silva P; Dinkespiler B; Fourme R; Gourhant P; Guimaraes B; Hustache S; Idir M; Itié JP; Legrand P; Menneglier C; Mercere P; Picca F; Samama JP
    J Synchrotron Radiat; 2012 May; 19(Pt 3):323-31. PubMed ID: 22514165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-dispersive diffraction with synchrotron radiation and a germanium detector.
    Honkimäki V; Suortti P
    J Synchrotron Radiat; 2007 Jul; 14(Pt 4):331-8. PubMed ID: 17587658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffractive refractive optics: the possibility of sagittal focusing in Laue-case diffraction.
    Hrdý J; Hoszowska J; Mocuta C; Artemiev N; Freund A
    J Synchrotron Radiat; 2003 May; 10(Pt 3):233-5. PubMed ID: 12714753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of X-ray plane-wave rocking curves on the deviation from exact Bragg orientation in and perpendicular to the diffraction plane for the asymmetrical Laue case.
    Balyan MK
    Acta Crystallogr A Found Adv; 2018 May; 74(Pt 3):204-215. PubMed ID: 29724966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.