These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 30378690)
1. Lipo-chitooligosaccharide signalling blocks a rapid pathogen-induced ROS burst without impeding immunity. Rey T; André O; Nars A; Dumas B; Gough C; Bottin A; Jacquet C New Phytol; 2019 Jan; 221(2):743-749. PubMed ID: 30378690 [TBL] [Abstract][Full Text] [Related]
2. The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. Gibelin-Viala C; Amblard E; Puech-Pages V; Bonhomme M; Garcia M; Bascaules-Bedin A; Fliegmann J; Wen J; Mysore KS; le Signor C; Jacquet C; Gough C New Phytol; 2019 Aug; 223(3):1516-1529. PubMed ID: 31058335 [TBL] [Abstract][Full Text] [Related]
3. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Feng F; Sun J; Radhakrishnan GV; Lee T; Bozsóki Z; Fort S; Gavrin A; Gysel K; Thygesen MB; Andersen KR; Radutoiu S; Stougaard J; Oldroyd GED Nat Commun; 2019 Nov; 10(1):5047. PubMed ID: 31695035 [TBL] [Abstract][Full Text] [Related]
4. Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula. Nars A; Lafitte C; Chabaud M; Drouillard S; Mélida H; Danoun S; Le Costaouëc T; Rey T; Benedetti J; Bulone V; Barker DG; Bono JJ; Dumas B; Jacquet C; Heux L; Fliegmann J; Bottin A PLoS One; 2013; 8(9):e75039. PubMed ID: 24086432 [TBL] [Abstract][Full Text] [Related]
5. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. Camps C; Jardinaud MF; Rengel D; Carrère S; Hervé C; Debellé F; Gamas P; Bensmihen S; Gough C New Phytol; 2015 Oct; 208(1):224-40. PubMed ID: 25919491 [TBL] [Abstract][Full Text] [Related]
6. The Medicago truncatula hypermycorrhizal B9 mutant displays an altered response to phosphate and is more susceptible to Aphanomyces euteiches. Truong HN; Thalineau E; Bonneau L; Fournier C; Potin S; Balzergue S; VAN Tuinen D; Jeandroz S; Morandi D Plant Cell Environ; 2015 Jan; 38(1):73-88. PubMed ID: 24815324 [TBL] [Abstract][Full Text] [Related]
7. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Kiirika LM; Bergmann HF; Schikowsky C; Wimmer D; Korte J; Schmitz U; Niehaus K; Colditz F Plant Physiol; 2012 May; 159(1):501-16. PubMed ID: 22399646 [TBL] [Abstract][Full Text] [Related]
8. Medicago TERPENE SYNTHASE 10 Is Involved in Defense Against an Oomycete Root Pathogen. Yadav H; Dreher D; Athmer B; Porzel A; Gavrin A; Baldermann S; Tissier A; Hause B Plant Physiol; 2019 Jul; 180(3):1598-1613. PubMed ID: 31015300 [TBL] [Abstract][Full Text] [Related]
10. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. Schenkluhn L; Hohnjec N; Niehaus K; Schmitz U; Colditz F J Proteomics; 2010 Feb; 73(4):753-68. PubMed ID: 19895911 [TBL] [Abstract][Full Text] [Related]
11. High-density genome-wide association mapping implicates an F-box encoding gene in Medicago truncatula resistance to Aphanomyces euteiches. Bonhomme M; André O; Badis Y; Ronfort J; Burgarella C; Chantret N; Prosperi JM; Briskine R; Mudge J; Debéllé F; Navier H; Miteul H; Hajri A; Baranger A; Tiffin P; Dumas B; Pilet-Nayel ML; Young ND; Jacquet C New Phytol; 2014 Mar; 201(4):1328-1342. PubMed ID: 24283472 [TBL] [Abstract][Full Text] [Related]
12. Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots. van Zeijl A; Op den Camp RH; Deinum EE; Charnikhova T; Franssen H; Op den Camp HJ; Bouwmeester H; Kohlen W; Bisseling T; Geurts R Mol Plant; 2015 Aug; 8(8):1213-26. PubMed ID: 25804975 [TBL] [Abstract][Full Text] [Related]
13. NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. Rey T; Nars A; Bonhomme M; Bottin A; Huguet S; Balzergue S; Jardinaud MF; Bono JJ; Cullimore J; Dumas B; Gough C; Jacquet C New Phytol; 2013 May; 198(3):875-886. PubMed ID: 23432463 [TBL] [Abstract][Full Text] [Related]
14. A receptor required for chitin perception facilitates arbuscular mycorrhizal associations and distinguishes root symbiosis from immunity. Zhang J; Sun J; Chiu CH; Landry D; Li K; Wen J; Mysore KS; Fort S; Lefebvre B; Oldroyd GED; Feng F Curr Biol; 2024 Apr; 34(8):1705-1717.e6. PubMed ID: 38574729 [TBL] [Abstract][Full Text] [Related]
15. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Djébali N; Jauneau A; Ameline-Torregrosa C; Chardon F; Jaulneau V; Mathé C; Bottin A; Cazaux M; Pilet-Nayel ML; Baranger A; Aouani ME; Esquerré-Tugayé MT; Dumas B; Huguet T; Jacquet C Mol Plant Microbe Interact; 2009 Sep; 22(9):1043-55. PubMed ID: 19656040 [TBL] [Abstract][Full Text] [Related]
16. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Sun J; Miller JB; Granqvist E; Wiley-Kalil A; Gobbato E; Maillet F; Cottaz S; Samain E; Venkateshwaran M; Fort S; Morris RJ; Ané JM; Dénarié J; Oldroyd GE Plant Cell; 2015 Mar; 27(3):823-38. PubMed ID: 25724637 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome analysis highlights preformed defences and signalling pathways controlled by the prAe1 quantitative trait locus (QTL), conferring partial resistance to Aphanomyces euteiches in Medicago truncatula. Badis Y; Bonhomme M; Lafitte C; Huguet S; Balzergue S; Dumas B; Jacquet C Mol Plant Pathol; 2015 Dec; 16(9):973-86. PubMed ID: 25765337 [TBL] [Abstract][Full Text] [Related]
18. Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis. Pfeilmeier S; George J; Morel A; Roy S; Smoker M; Stransfeld L; Downie JA; Peeters N; Malone JG; Zipfel C Plant Biotechnol J; 2019 Mar; 17(3):569-579. PubMed ID: 30120864 [TBL] [Abstract][Full Text] [Related]
19. Distinct genetic basis for root responses to lipo-chitooligosaccharide signal molecules from different microbial origins. Bonhomme M; Bensmihen S; André O; Amblard E; Garcia M; Maillet F; Puech-Pagès V; Gough C; Fort S; Cottaz S; Bécard G; Jacquet C J Exp Bot; 2021 May; 72(10):3821-3834. PubMed ID: 33675231 [TBL] [Abstract][Full Text] [Related]
20. An extracellular β-N-acetylhexosaminidase of Medicago truncatula hydrolyzes chitooligosaccharides and is involved in arbuscular mycorrhizal symbiosis but not required for nodulation. Wang YH; Liu W; Cheng J; Li RJ; Wen J; Mysore KS; Xie ZP; Reinhardt D; Staehelin C New Phytol; 2023 Sep; 239(5):1954-1973. PubMed ID: 37416943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]