These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30379077)

  • 1. Self-Repair of Structure and Bioactivity in a Supramolecular Nanostructure.
    Chen CH; Palmer LC; Stupp SI
    Nano Lett; 2018 Nov; 18(11):6832-6841. PubMed ID: 30379077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-assembly functionalization of supramolecular nanostructures with bioactive peptides and fluorescent proteins by native chemical ligation.
    Khan S; Sur S; Dankers PY; da Silva RM; Boekhoven J; Poor TA; Stupp SI
    Bioconjug Chem; 2014 Apr; 25(4):707-17. PubMed ID: 24670265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Soft Nanomaterials Composed of DNA Microspheres and Supramolecular Nanostructures of Semi-artificial Glycopeptides.
    Higashi SL; Shibata A; Kitamura Y; Hirosawa KM; Suzuki KGN; Matsuura K; Ikeda M
    Chemistry; 2019 Sep; 25(51):11955-11962. PubMed ID: 31268200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Sorting vs Coassembly in Peptide Amphiphile Supramolecular Nanostructures.
    Sangji MH; Lee SR; Sai H; Weigand S; Palmer LC; Stupp SI
    ACS Nano; 2024 Jun; 18(24):15878-15887. PubMed ID: 38848478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging Supramolecular Morphogenesis with Confocal Laser Scanning Microscopy at Elevated Temperatures.
    Sai H; Lau GC; Dannenhoffer AJ; Chin SM; D Ord Ević L; Stupp SI
    Nano Lett; 2020 Jun; 20(6):4234-4241. PubMed ID: 32383889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen Bonding Stiffens Peptide Amphiphile Supramolecular Filaments by Aza-Glycine Residues.
    Godbe JM; Freeman R; Lewis JA; Sasselli IR; Sangji MH; Stupp SI
    Acta Biomater; 2021 Nov; 135():87-99. PubMed ID: 34481055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic Evolution in Metal-Dependent Self-Assembly of Peptide-Terpyridine Conjugates.
    Sahoo JK; VandenBerg MA; Webber MJ
    Macromol Rapid Commun; 2020 Feb; 41(3):e1900565. PubMed ID: 31880036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force and time-dependent self-assembly, disruption and recovery of supramolecular peptide amphiphile nanofibers.
    Dikecoglu FB; Topal AE; Ozkan AD; Tekin ED; Tekinay AB; Guler MO; Dana A
    Nanotechnology; 2018 Jul; 29(28):285701. PubMed ID: 29664418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Supramolecular Structure and Functions of Peptide bola-Amphiphile by Solvent Evaporation-Dissolution.
    Wang A; Cui L; Debnath S; Dong Q; Yan X; Zhang X; Ulijn RV; Bai S
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21390-21396. PubMed ID: 28590718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Interactions and Morphology of Self-Assembling Peptide Amphiphile Nanostructures.
    Sangji MH; Sai H; Chin SM; Lee SR; R Sasselli I; Palmer LC; Stupp SI
    Nano Lett; 2021 Jul; 21(14):6146-6155. PubMed ID: 34259001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular self-assembly into one-dimensional nanostructures.
    Palmer LC; Stupp SI
    Acc Chem Res; 2008 Dec; 41(12):1674-84. PubMed ID: 18754628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core.
    Hsu L; Cvetanovich GL; Stupp SI
    J Am Chem Soc; 2008 Mar; 130(12):3892-9. PubMed ID: 18314978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.
    Garifullin R; Guler MO
    Chem Commun (Camb); 2015 Aug; 51(62):12470-3. PubMed ID: 26146021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical supramolecular spinning of nanofibers in a microfluidic channel: tuning nanostructures at a dynamic interface.
    Numata M; Takigami Y; Takayama M; Kozawa T; Hirose N
    Chemistry; 2012 Oct; 18(41):13008-17. PubMed ID: 22945551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-Induced Nanostructure Transition for Supramolecular Gelation in Water.
    Chakravarthy RD; Sahroni I; Wang CW; Mohammed M; Lin HC
    ACS Nano; 2023 Jun; 17(12):11805-11816. PubMed ID: 37294326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting chondrocyte bioactivity with ultra-sulfated glycopeptide supramolecular polymers.
    Sollenberger CH; Qiu R; Sai H; Carrow JK; Fyrner T; Gao Z; Palmer LC; Stupp SI
    Acta Biomater; 2024 Nov; 189():103-115. PubMed ID: 39362449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular Self-Assembly Bioinspired Synthesis of Luminescent Gold Nanocluster-Embedded Peptide Nanofibers for Temperature Sensing and Cellular Imaging.
    Zhang W; Lin D; Wang H; Li J; Nienhaus GU; Su Z; Wei G; Shang L
    Bioconjug Chem; 2017 Sep; 28(9):2224-2229. PubMed ID: 28787136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.