These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 30379148)
1. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Lim W; Hoang HH; You D; Han J; Lee JE; Kim S; Park S Analyst; 2018 Nov; 143(23):5841-5848. PubMed ID: 30379148 [TBL] [Abstract][Full Text] [Related]
2. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator. Lee Y; Chen Z; Lim W; Cho H; Park S Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205 [TBL] [Abstract][Full Text] [Related]
3. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Kim C; Bang JH; Kim YE; Lee SH; Kang JY Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534 [TBL] [Abstract][Full Text] [Related]
4. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Yu L; Chen MC; Cheung KC Lab Chip; 2010 Sep; 10(18):2424-32. PubMed ID: 20694216 [TBL] [Abstract][Full Text] [Related]
5. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Chen Y; Gao D; Liu H; Lin S; Jiang Y Anal Chim Acta; 2015 Oct; 898():85-92. PubMed ID: 26526913 [TBL] [Abstract][Full Text] [Related]
6. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698 [TBL] [Abstract][Full Text] [Related]
7. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids. Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205 [TBL] [Abstract][Full Text] [Related]
8. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Gallegos-Martínez S; Choy-Buentello D; Pérez-Álvarez KA; Lara-Mayorga IM; Aceves-Colin AE; Zhang YS; Trujillo-de Santiago G; Álvarez MM Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38866003 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Chen Y; Sun W; Kang L; Wang Y; Zhang M; Zhang H; Hu P Analyst; 2019 Jul; 144(14):4233-4240. PubMed ID: 31210202 [TBL] [Abstract][Full Text] [Related]
10. Multi-size spheroid formation using microfluidic funnels. Marimuthu M; Rousset N; St-Georges-Robillard A; Lateef MA; Ferland M; Mes-Masson AM; Gervais T Lab Chip; 2018 Jan; 18(2):304-314. PubMed ID: 29211088 [TBL] [Abstract][Full Text] [Related]
11. 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer. Mehta V; Vilikkathala Sudhakaran S; Nellore V; Madduri S; Rath SN J Nanobiotechnology; 2024 Jun; 22(1):344. PubMed ID: 38890730 [TBL] [Abstract][Full Text] [Related]
12. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Mulholland T; McAllister M; Patek S; Flint D; Underwood M; Sim A; Edwards J; Zagnoni M Sci Rep; 2018 Oct; 8(1):14672. PubMed ID: 30279484 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process. Baye J; Galvin C; Shen AQ Biomed Microdevices; 2017 Sep; 19(3):59. PubMed ID: 28667400 [TBL] [Abstract][Full Text] [Related]
14. Comparison of VEGF-A secretion from tumor cells under cellular stresses in conventional monolayer culture and microfluidic three-dimensional spheroid models. Sarkar S; Peng CC; Tung YC PLoS One; 2020; 15(11):e0240833. PubMed ID: 33175874 [TBL] [Abstract][Full Text] [Related]
15. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Chen MC; Gupta M; Cheung KC Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849 [TBL] [Abstract][Full Text] [Related]
16. Digital microfluidics for automated hanging drop cell spheroid culture. Aijian AP; Garrell RL J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Wu LY; Di Carlo D; Lee LP Biomed Microdevices; 2008 Apr; 10(2):197-202. PubMed ID: 17965938 [TBL] [Abstract][Full Text] [Related]
18. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Patra B; Peng CC; Liao WH; Lee CH; Tung YC Sci Rep; 2016 Feb; 6():21061. PubMed ID: 26877244 [TBL] [Abstract][Full Text] [Related]
19. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985 [TBL] [Abstract][Full Text] [Related]
20. Robotic printing and drug testing of 384-well tumor spheroids. Ham SL; Thakuri PS; Tavana H Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2183-6. PubMed ID: 26736723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]