BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30379410)

  • 1. Characterization of the optical properties of color pastes for the design of optical phantoms mimicking biological tissue.
    Tomm N; Ahnen L; Isler H; Kleiser S; Karen T; Ostojic D; Wolf M; Scholkmann F
    J Biophotonics; 2019 Apr; 12(4):e201800300. PubMed ID: 30379410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Comparisons of Near-Infrared Spectroscopy Oximeters: Impact of Slow Changes in Scattering of Liquid Phantoms.
    Ostojic D; Kleiser S; Nasseri N; Isler H; Andresen B; Wabnitz H; Karen T; Scholkmann F; Wolf M
    Adv Exp Med Biol; 2018; 1072():375-379. PubMed ID: 30178374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption spectra of early stool from preterm infants need to be considered in abdominal NIRS oximetry.
    Isler H; Schenk D; Bernhard J; Kleiser S; Scholkmann F; Ostojic D; Kalyanov A; Ahnen L; Wolf M; Karen T
    Biomed Opt Express; 2019 Jun; 10(6):2784-2794. PubMed ID: 31259051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties.
    Goldfain AM; Lemaillet P; Allen DW; Briggman KA; Hwang J
    J Biomed Opt; 2021 Nov; 27(7):. PubMed ID: 34796707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BIAN: A Multilayer Microfluidic-Based Tissue-Mimicking Phantom for Near-Infrared Imaging.
    Li T; Kalyanov A; Wolf M; Ackermann M; Russomanno E; Jiang J; Mata ADC
    Adv Exp Med Biol; 2023; 1438():179-183. PubMed ID: 37845458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.
    Kim H; Hau NT; Chae YG; Lee BI; Kang HW
    Lasers Surg Med; 2016 Apr; 48(4):392-9. PubMed ID: 26749358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.
    Greening GJ; Istfan R; Higgins LM; Balachandran K; Roblyer D; Pierce MC; Muldoon TJ
    J Biomed Opt; 2014; 19(11):115002. PubMed ID: 25387084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid Blood Phantoms to Validate NIRS Oximeters: Yeast Versus Nitrogen for Deoxygenation.
    Isler H; Kleiser S; Ostojic D; Scholkmann F; Karen T; Wolf M
    Adv Exp Med Biol; 2018; 1072():381-385. PubMed ID: 30178375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension.
    Kleiser S; Ostojic D; Andresen B; Nasseri N; Isler H; Scholkmann F; Karen T; Greisen G; Wolf M
    Biomed Opt Express; 2018 Jan; 9(1):86-101. PubMed ID: 29359089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid hemoglobin-polymer phantoms for evaluation of biophotonic systems.
    Jang H; Pfefer TJ; Chen Y
    Opt Lett; 2015 Sep; 40(18):4321-4. PubMed ID: 26371926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-cost tissue simulating phantoms with adjustable wavelength-dependent scattering properties in the visible and infrared ranges.
    Saager RB; Quach A; Rowland RA; Baldado ML; Durkin AJ
    J Biomed Opt; 2016 Jun; 21(6):67001. PubMed ID: 27292135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of retrieving optical properties from liquid tissue phantoms using a single integrating sphere.
    Vincely VD; Vishwanath K
    Appl Opt; 2022 Jan; 61(2):375-385. PubMed ID: 35200872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of fundamental properties of homogeneous tissue phantoms.
    Wróbel MS; Popov AP; Bykov AV; Kinnunen M; Jędrzejewska-Szczerska M; Tuchin VV
    J Biomed Opt; 2015 Apr; 20(4):045004. PubMed ID: 25891198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of polyurethane optical phantoms.
    Moffitt T; Chen YC; Prahl SA
    J Biomed Opt; 2006; 11(4):041103. PubMed ID: 16965131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Near-Infrared Oximeters in a Liquid Optical Phantom with Varying Intralipid and Blood Content.
    Kleiser S; Hyttel-Sorensen S; Greisen G; Wolf M
    Adv Exp Med Biol; 2016; 876():413-418. PubMed ID: 26782240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics.
    Kennedy GT; Lentsch GR; Trieu B; Ponticorvo A; Saager RB; Durkin AJ
    J Biomed Opt; 2017 Jul; 22(7):76013. PubMed ID: 28727869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phantom materials mimicking the optical properties in the near infrared range for non-invasive fetal pulse oximetry.
    Ley S; Stadthalter M; Link D; Laqua D; Husar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1432-5. PubMed ID: 25570237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip.
    Sthalekar CC; Miao Y; Koomson VJ
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):279-286. PubMed ID: 28113987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved subtraction method for measuring optical properties of turbid media.
    Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K
    Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifrequency frequency-domain spectrometer for tissue analysis.
    Spichtig S; Hornung R; Brown DW; Haensse D; Wolf M
    Rev Sci Instrum; 2009 Feb; 80(2):024301. PubMed ID: 19256664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.