These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 30379521)
1. In Situ Grain Boundary Modification via Two-Dimensional Nanoplates to Remarkably Improve Stability and Efficiency of Perovskite Solar Cells. Zhu X; Zuo S; Yang Z; Feng J; Wang Z; Zhang X; Priya S; Liu SF; Yang D ACS Appl Mater Interfaces; 2018 Nov; 10(46):39802-39808. PubMed ID: 30379521 [TBL] [Abstract][Full Text] [Related]
2. Fully Methylammonium-Free Stable Formamidinium Lead Iodide Perovskite Solar Cells Processed under Humid Air Conditions. Wang K; Huo J; Cao L; Yang P; Müller-Buschbaum P; Tong Y; Wang H ACS Appl Mater Interfaces; 2023 Mar; 15(10):13353-13362. PubMed ID: 36853957 [TBL] [Abstract][Full Text] [Related]
3. Bilateral Interface Engineering for Efficient and Stable Perovskite Solar Cells Using Phenylethylammonium Iodide. Zhang Y; Jang S; Hwang IW; Jung YK; Lee BR; Kim JH; Kim KH; Park SH ACS Appl Mater Interfaces; 2020 Jun; 12(22):24827-24836. PubMed ID: 32379424 [TBL] [Abstract][Full Text] [Related]
4. Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance. Liu C; Huang Z; Hu X; Meng X; Huang L; Xiong J; Tan L; Chen Y ACS Appl Mater Interfaces; 2018 Jan; 10(2):1909-1916. PubMed ID: 29271205 [TBL] [Abstract][Full Text] [Related]
5. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492 [TBL] [Abstract][Full Text] [Related]
6. PEAI-Based Interfacial Layer for High-Efficiency and Stable Solar Cells Based on a MACl-Mediated Grown FA Zhu T; Zheng D; Liu J; Coolen L; Pauporté T ACS Appl Mater Interfaces; 2020 Aug; 12(33):37197-37207. PubMed ID: 32814384 [TBL] [Abstract][Full Text] [Related]
7. Nonstoichiometric Adduct Approach for High-Efficiency Perovskite Solar Cells. Park NG Inorg Chem; 2017 Jan; 56(1):3-10. PubMed ID: 27709923 [TBL] [Abstract][Full Text] [Related]
8. Toward Highly Reproducible, Efficient, and Stable Perovskite Solar Cells via Interface Engineering with CoO Nanoplates. Dou Y; Wang D; Li G; Liao Y; Sun W; Wu J; Lan Z ACS Appl Mater Interfaces; 2019 Sep; 11(35):32159-32168. PubMed ID: 31403271 [TBL] [Abstract][Full Text] [Related]
9. Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells. Li H; Liang C; Liu Y; Zhang Y; Tong J; Zuo W; Xu S; Shao G; Cao S ACS Appl Mater Interfaces; 2017 Feb; 9(7):6064-6071. PubMed ID: 28124553 [TBL] [Abstract][Full Text] [Related]
10. HPbI He Y; Wang W; Qi L ACS Appl Mater Interfaces; 2018 Nov; 10(45):38985-38993. PubMed ID: 30339348 [TBL] [Abstract][Full Text] [Related]
11. Effects of Moisture-Based Grain Boundary Passivation on Cell Performance and Ionic Migration in Organic-Inorganic Halide Perovskite Solar Cells. Hoque MNF; He R; Warzywoda J; Fan Z ACS Appl Mater Interfaces; 2018 Sep; 10(36):30322-30329. PubMed ID: 30118195 [TBL] [Abstract][Full Text] [Related]
12. Secondary Grain Growth in Organic-Inorganic Perovskite Films with Ethylamine Hydrochloride Additives for Highly Efficient Solar Cells. Ji C; Liang C; Zhang H; Sun M; Song Q; Sun F; Feng X; Liu N; Gong H; Li D; You F; He Z ACS Appl Mater Interfaces; 2020 Apr; 12(17):20026-20034. PubMed ID: 32249563 [TBL] [Abstract][Full Text] [Related]
13. Stabilizing γ-CsPbI Ye Q; Ma F; Zhao Y; Yu S; Chu Z; Gao P; Zhang X; You J Small; 2020 Dec; 16(50):e2005246. PubMed ID: 33230955 [TBL] [Abstract][Full Text] [Related]
14. Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification. Luo W; Wu C; Wang D; Zhang Y; Zhang Z; Qi X; Zhu N; Guo X; Qu B; Xiao L; Chen Z ACS Appl Mater Interfaces; 2019 Mar; 11(9):9149-9155. PubMed ID: 30715841 [TBL] [Abstract][Full Text] [Related]
15. Incorporating C Chen HB; Ding XH; Pan X; Hayat T; Alsaedi A; Ding Y; Dai SY ACS Appl Mater Interfaces; 2018 Jan; 10(3):2603-2611. PubMed ID: 29285921 [TBL] [Abstract][Full Text] [Related]
16. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells. Chiang CH; Wu CG ChemSusChem; 2016 Sep; 9(18):2666-2672. PubMed ID: 27601006 [TBL] [Abstract][Full Text] [Related]
18. Ambient Engineering for High-Performance Organic-Inorganic Perovskite Hybrid Solar Cells. Huang J; Yu X; Xie J; Xu D; Tang Z; Cui C; Yang D ACS Appl Mater Interfaces; 2016 Aug; 8(33):21505-11. PubMed ID: 27489961 [TBL] [Abstract][Full Text] [Related]
19. High Efficiency and Stability of Inverted Perovskite Solar Cells Using Phenethyl Ammonium Iodide-Modified Interface of NiO Liu Y; Duan J; Zhang J; Huang S; Ou-Yang W; Bao Q; Sun Z; Chen X ACS Appl Mater Interfaces; 2020 Jan; 12(1):771-779. PubMed ID: 31854975 [TBL] [Abstract][Full Text] [Related]
20. Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganic-Organic Lead Halide Solar Cells. Kim GY; Oh SH; Nguyen BP; Jo W; Kim BJ; Lee DG; Jung HS J Phys Chem Lett; 2015 Jun; 6(12):2355-62. PubMed ID: 26266617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]