BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 30379539)

  • 21. Affinity Ionic Liquids for Chemoselective Gas Sensing.
    Chang A; Li HY; Chang IN; Chu YH
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30231477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spongelike structures of hexa-peri-hexabenzocoronene derivatives enhance the sensitivity of chemiresistive carbon nanotubes to nonpolar volatile organic compounds of cancer.
    Zilberman Y; Tisch U; Pisula W; Feng X; Müllen K; Haick H
    Langmuir; 2009 May; 25(9):5411-6. PubMed ID: 19344156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionic liquids for soft functional materials with carbon nanotubes.
    Fukushima T; Aida T
    Chemistry; 2007; 13(18):5048-58. PubMed ID: 17516613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imidazolium Ionic Liquid Functionalized Carbon Nanotubes for Improved Interfacial Charge Transfer and Simultaneous Determination of Dihydroxybenzene Isomers.
    Wei H; Wu XS; Wen GY; Qiao Y
    Molecules; 2016 May; 21(5):. PubMed ID: 27187344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene-Doped Tin Oxide Nanofibers and Nanoribbons as Gas Sensors to Detect Biomarkers of Different Diseases through the Breath.
    Sánchez-Vicente C; Santos JP; Lozano J; Sayago I; Sanjurjo JL; Azabal A; Ruiz-Valdepeñas S
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis.
    Sun X; Shao K; Wang T
    Anal Bioanal Chem; 2016 Apr; 408(11):2759-80. PubMed ID: 26677028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives.
    Yoon JW; Lee JH
    Lab Chip; 2017 Oct; 17(21):3537-3557. PubMed ID: 28971204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laccase activity and stability in the presence of menthol-based ionic liquids.
    Feder-Kubis J; Bryjak J
    Acta Biochim Pol; 2013; 60(4):741-5. PubMed ID: 24364047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical sensor system for breath analysis of aldehydes, CO and NO.
    Obermeier J; Trefz P; Wex K; Sabel B; Schubert JK; Miekisch W
    J Breath Res; 2015 Mar; 9(1):016008. PubMed ID: 25749754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-performance gas sensors based on single-wall carbon nanotube random networks for the detection of nitric oxide down to the ppb-level.
    Jeon JY; Kang BC; Byun YT; Ha TJ
    Nanoscale; 2019 Jan; 11(4):1587-1594. PubMed ID: 30543231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progress in the development of volatile exhaled breath signatures of lung cancer.
    Mazzone PJ; Wang XF; Lim S; Jett J; Choi H; Zhang Q; Beukemann M; Seeley M; Martino R; Rhodes P
    Ann Am Thorac Soc; 2015 May; 12(5):752-7. PubMed ID: 25965541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tungsten Disulfide Nanotube-Modified Conductive Paper-Based Chemiresistive Sensor for the Application in Volatile Organic Compounds' Detection.
    Huang SJ; Immanuel PN; Yen YK; Yen CL; Tseng CE; Lin GT; Lin CK; Huang ZX
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensors for breath testing: from nanomaterials to comprehensive disease detection.
    Konvalina G; Haick H
    Acc Chem Res; 2014 Jan; 47(1):66-76. PubMed ID: 23926883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications of Ionic Liquids for the Development of Optical Chemical Sensors and Biosensors.
    Muginova SV; Myasnikova DA; Kazarian SG; Shekhovtsova TN
    Anal Sci; 2017; 33(3):261-274. PubMed ID: 28302965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A flexible virtual sensor array based on laser-induced graphene and MXene for detecting volatile organic compounds in human breath.
    Li D; Shao Y; Zhang Q; Qu M; Ping J; Fu Y; Xie J
    Analyst; 2021 Sep; 146(18):5704-5713. PubMed ID: 34515697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of volatile organic compounds in the breath of patients with stable or acute exacerbation of chronic obstructive pulmonary disease.
    Pizzini A; Filipiak W; Wille J; Ager C; Wiesenhofer H; Kubinec R; Blaško J; Tschurtschenthaler C; Mayhew CA; Weiss G; Bellmann-Weiler R
    J Breath Res; 2018 Mar; 12(3):036002. PubMed ID: 29295966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tetrahydrocannabinol Detection Using Semiconductor-Enriched Single-Walled Carbon Nanotube Chemiresistors.
    Hwang SI; Franconi NG; Rothfuss MA; Bocan KN; Bian L; White DL; Burkert SC; Euler RW; Sopher BJ; Vinay ML; Sejdic E; Star A
    ACS Sens; 2019 Aug; 4(8):2084-2093. PubMed ID: 31321969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatographic analysis of VOC patterns in exhaled breath from smokers and nonsmokers.
    Capone S; Tufariello M; Forleo A; Longo V; Giampetruzzi L; Radogna AV; Casino F; Siciliano P
    Biomed Chromatogr; 2018 Apr; 32(4):. PubMed ID: 29131420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of nonpolar molecules by means of carrier scattering in random networks of carbon nanotubes: toward diagnosis of diseases via breath samples.
    Peng G; Tisch U; Haick H
    Nano Lett; 2009 Apr; 9(4):1362-8. PubMed ID: 19320442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.