These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1511 related articles for article (PubMed ID: 30379623)

  • 41. Redox regulation of gasotransmission in the vascular system: A focus on angiogenesis.
    Mistry RK; Brewer AC
    Free Radic Biol Med; 2017 Jul; 108():500-516. PubMed ID: 28433660
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases.
    Incalza MA; D'Oria R; Natalicchio A; Perrini S; Laviola L; Giorgino F
    Vascul Pharmacol; 2018 Jan; 100():1-19. PubMed ID: 28579545
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cardiac mitochondria and reactive oxygen species generation.
    Chen YR; Zweier JL
    Circ Res; 2014 Jan; 114(3):524-37. PubMed ID: 24481843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mitochondrial generation of free radicals and hypoxic signaling.
    Poyton RO; Ball KA; Castello PR
    Trends Endocrinol Metab; 2009 Sep; 20(7):332-40. PubMed ID: 19733481
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inorganic nitrite bioactivation and role in physiological signaling and therapeutics.
    Amdahl MB; DeMartino AW; Gladwin MT
    Biol Chem; 2019 Dec; 401(1):201-211. PubMed ID: 31747370
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications.
    Nediani C; Raimondi L; Borchi E; Cerbai E
    Antioxid Redox Signal; 2011 Jan; 14(2):289-331. PubMed ID: 20624031
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase.
    Shen GX
    Can J Physiol Pharmacol; 2010 Mar; 88(3):241-8. PubMed ID: 20393589
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Redox metabolism: ROS as specific molecular regulators of cell signaling and function.
    Lennicke C; Cochemé HM
    Mol Cell; 2021 Sep; 81(18):3691-3707. PubMed ID: 34547234
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual roles of vascular-derived reactive oxygen species--with a special reference to hydrogen peroxide and cyclophilin A.
    Satoh K; Godo S; Saito H; Enkhjargal B; Shimokawa H
    J Mol Cell Cardiol; 2014 Aug; 73():50-6. PubMed ID: 24406688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitric oxide and reactive oxygen species in limb vascular function: what is the effect of physical activity?
    Gliemann L; Nyberg M; Hellsten Y
    Free Radic Res; 2014 Jan; 48(1):71-83. PubMed ID: 23962038
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Signal transduction of reactive oxygen species and mitogen-activated protein kinases in cardiovascular disease.
    Yoshizumi M; Tsuchiya K; Tamaki T
    J Med Invest; 2001 Feb; 48(1-2):11-24. PubMed ID: 11286012
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association.
    Griendling KK; Touyz RM; Zweier JL; Dikalov S; Chilian W; Chen YR; Harrison DG; Bhatnagar A;
    Circ Res; 2016 Aug; 119(5):e39-75. PubMed ID: 27418630
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hypoxia inducible factors as mediators of reactive oxygen/nitrogen species homeostasis in physiological normoxia.
    Stuart JA; Aibueku O; Bagshaw O; Moradi F
    Med Hypotheses; 2019 Aug; 129():109249. PubMed ID: 31371070
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New opportunities for targeting redox dysregulation in cardiovascular disease.
    Bubb KJ; Drummond GR; Figtree GA
    Cardiovasc Res; 2020 Mar; 116(3):532-544. PubMed ID: 31297507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells.
    Byon CH; Heath JM; Chen Y
    Redox Biol; 2016 Oct; 9():244-253. PubMed ID: 27591403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation.
    Cantu-Medellin N; Kelley EE
    Redox Biol; 2013 Jun; 1(1):353-8. PubMed ID: 24024171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Free radicals in disease.
    Hogg N
    Semin Reprod Endocrinol; 1998; 16(4):241-8. PubMed ID: 10101806
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Divergent roles of endothelial nitric oxide synthases system in maintaining cardiovascular homeostasis.
    Godo S; Shimokawa H
    Free Radic Biol Med; 2017 Aug; 109():4-10. PubMed ID: 27988339
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen peroxide signaling in vascular endothelial cells.
    Bretón-Romero R; Lamas S
    Redox Biol; 2014; 2():529-34. PubMed ID: 24634835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 76.