These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30380198)

  • 1. The Role of Bridging Water and Hydrogen Bonding as Key Determinants of Noncovalent Protein-Carbohydrate Recognition.
    Ruvinsky AM; Aloni I; Cappel D; Higgs C; Marshall K; Rotkiewicz P; Repasky M; Feher VA; Feyfant E; Hessler G; Matter H
    ChemMedChem; 2018 Dec; 13(24):2684-2693. PubMed ID: 30380198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range influence of carbohydrates on the solvation dynamics of water--answers from terahertz absorption measurements and molecular modeling simulations.
    Heyden M; Bründermann E; Heugen U; Niehues G; Leitner DM; Havenith M
    J Am Chem Soc; 2008 Apr; 130(17):5773-9. PubMed ID: 18393415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides.
    Elgavish S; Shaanan B
    J Mol Biol; 1998 Apr; 277(4):917-32. PubMed ID: 9545381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the galectin-1 carbohydrate recognition domain in terms of solvent occupancy.
    Di Lella S; Martí MA; Alvarez RM; Estrin DA; Ricci JC
    J Phys Chem B; 2007 Jun; 111(25):7360-6. PubMed ID: 17523619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate-aromatic interactions.
    Asensio JL; Ardá A; Cañada FJ; Jiménez-Barbero J
    Acc Chem Res; 2013 Apr; 46(4):946-54. PubMed ID: 22704792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor rigidity and ligand mobility in trypsin-ligand complexes.
    Guvench O; Price DJ; Brooks CL
    Proteins; 2005 Feb; 58(2):407-17. PubMed ID: 15578663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of binary mixtures of water with aprotic solvents to turn hydroxyl protons of carbohydrate ligands into conformational sensors in NOE and transferred NOE experiments.
    Siebert HC; André S; Vliegenthart JF; Gabius HJ; Minch MJ
    J Biomol NMR; 2003 Mar; 25(3):197-215. PubMed ID: 12652132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disaccharide binding to galectin-1: free energy calculations and molecular recognition mechanism.
    Echeverria I; Amzel LM
    Biophys J; 2011 May; 100(9):2283-92. PubMed ID: 21539798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of water molecules in structure and energetics of Pseudomonas aeruginosa lectin I interacting with disaccharides.
    Nurisso A; Blanchard B; Audfray A; Rydner L; Oscarson S; Varrot A; Imberty A
    J Biol Chem; 2010 Jun; 285(26):20316-27. PubMed ID: 20410292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Analysis of Key Residues Involved in Folding and Binding of Protein-carbohydrate Complexes.
    Shanmugam NRS; Selvin JFA; Veluraja K; Gromiha MM
    Protein Pept Lett; 2018; 25(4):379-389. PubMed ID: 29473490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR investigations of protein-carbohydrate interactions: refined three-dimensional structure of the complex between hevein and methyl beta-chitobioside.
    Asensio JL; Cañada FJ; Bruix M; González C; Khiar N; Rodríguez-Romero A; Jiménez-Barbero J
    Glycobiology; 1998 Jun; 8(6):569-77. PubMed ID: 9592123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent structure improves docking prediction in lectin-carbohydrate complexes.
    Gauto DF; Petruk AA; Modenutti CP; Blanco JI; Di Lella S; Martí MA
    Glycobiology; 2013 Feb; 23(2):241-58. PubMed ID: 23089616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using crystallographic water properties for the analysis and prediction of lectin-carbohydrate complex structures.
    Modenutti C; Gauto D; Radusky L; Blanco J; Turjanski A; Hajos S; Marti M
    Glycobiology; 2015 Feb; 25(2):181-96. PubMed ID: 25267604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A "solvated rotamer" approach to modeling water-mediated hydrogen bonds at protein-protein interfaces.
    Jiang L; Kuhlman B; Kortemme T; Baker D
    Proteins; 2005 Mar; 58(4):893-904. PubMed ID: 15651050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT
    J Chem Inf Model; 2013 Jun; 53(6):1388-405. PubMed ID: 23662606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate-lysozyme interaction studies.
    Landström J; Bergström M; Hamark C; Ohlson S; Widmalm G
    Org Biomol Chem; 2012 Apr; 10(15):3019-32. PubMed ID: 22395160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, dynamics, and interactions of jacalin. Insights from molecular dynamics simulations examined in conjunction with results of X-ray studies.
    Sharma A; Sekar K; Vijayan M
    Proteins; 2009 Dec; 77(4):760-77. PubMed ID: 19544573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water Networks Can Determine the Affinity of Ligand Binding to Proteins.
    Darby JF; Hopkins AP; Shimizu S; Roberts SM; Brannigan JA; Turkenburg JP; Thomas GH; Hubbard RE; Fischer M
    J Am Chem Soc; 2019 Oct; 141(40):15818-15826. PubMed ID: 31518131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.