These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30380306)

  • 41. Preventing the spread of malaria and dengue fever using genetically modified mosquitoes.
    James AA
    J Vis Exp; 2007; (5):231. PubMed ID: 18979028
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks.
    Seirin Lee S; Baker RE; Gaffney EA; White SM
    J Theor Biol; 2013 Aug; 331():78-90. PubMed ID: 23608633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.
    Benelli G; Mehlhorn H
    Parasitol Res; 2016 May; 115(5):1747-54. PubMed ID: 26932263
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors.
    Hanley KA; Goddard LB; Gilmore LE; Scott TW; Speicher J; Murphy BR; Pletnev AG
    Vector Borne Zoonotic Dis; 2005; 5(1):1-10. PubMed ID: 15815144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A model for the control of malaria using genetically modified vectors.
    Diaz H; Ramirez AA; Olarte A; Clavijo C
    J Theor Biol; 2011 May; 276(1):57-66. PubMed ID: 21300074
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mosquito-Borne Diseases.
    Lee H; Halverson S; Ezinwa N
    Prim Care; 2018 Sep; 45(3):393-407. PubMed ID: 30115330
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mirrored dynamics of a wild mosquito population suppression model with Ricker-type survival probability and time delay.
    Zhu Z; Feng X; He X; Guo H
    Math Biosci Eng; 2024 Jan; 21(2):1884-1898. PubMed ID: 38454666
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mosquito transgenesis: what is the fitness cost?
    Marrelli MT; Moreira CK; Kelly D; Alphey L; Jacobs-Lorena M
    Trends Parasitol; 2006 May; 22(5):197-202. PubMed ID: 16564223
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of maturation delay of mosquitoes on the transmission of West Nile virus.
    Fan G; Liu J; van den Driessche P; Wu J; Zhu H
    Math Biosci; 2010 Dec; 228(2):119-26. PubMed ID: 20828577
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigating the impact of multiple feeding attempts on mosquito dynamics via mathematical models.
    Ghakanyuy BM; Teboh-Ewungkem MI; Schneider KA; Ngwa GA
    Math Biosci; 2022 Aug; 350():108832. PubMed ID: 35718220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The impact of predators of mosquito larvae on
    Zhu Z; Hui Y; Hu L
    J Biol Dyn; 2023 Dec; 17(1):2249024. PubMed ID: 37603352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system.
    Atkinson MP; Su Z; Alphey N; Alphey LS; Coleman PG; Wein LM
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9540-5. PubMed ID: 17519336
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stability analysis in a mosquito population suppression model.
    Lin G; Hui Y
    J Biol Dyn; 2020 Dec; 14(1):578-589. PubMed ID: 32672096
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineered mosquitoes to fight mosquito borne diseases: not a merely technical issue.
    Favia G
    Bioengineered; 2015; 6(1):5-7. PubMed ID: 25495663
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes.
    Lees RS; Knols B; Bellini R; Benedict MQ; Bheecarry A; Bossin HC; Chadee DD; Charlwood J; Dabiré RK; Djogbenou L; Egyir-Yawson A; Gato R; Gouagna LC; Hassan MM; Khan SA; Koekemoer LL; Lemperiere G; Manoukis NC; Mozuraitis R; Pitts RJ; Simard F; Gilles JR
    Acta Trop; 2014 Apr; 132 Suppl():S2-11. PubMed ID: 24252487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sexual chemoecology of mosquitoes (Diptera, Culicidae): Current knowledge and implications for vector control programs.
    Vaníčková L; Canale A; Benelli G
    Parasitol Int; 2017 Apr; 66(2):190-195. PubMed ID: 27692501
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling and biological control of mosquitoes.
    Lord CC
    J Am Mosq Control Assoc; 2007; 23(2 Suppl):252-64. PubMed ID: 17853610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Threshold Infection Level for [Formula: see text] Invasion in a Two-Sex Mosquito Population Model.
    Li D; Wan H
    Bull Math Biol; 2019 Jul; 81(7):2596-2624. PubMed ID: 31161558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A mathematical model for assessing control strategies against West Nile virus.
    Bowman C; Gumel AB; van den Driessche P; Wu J; Zhu H
    Bull Math Biol; 2005 Sep; 67(5):1107-33. PubMed ID: 15998497
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Climatic Conditions: Conventional and Nanotechnology-Based Methods for the Control of
    Ahmed T; Hyder MZ; Liaqat I; Scholz M
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31480254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.