These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30380317)

  • 1. Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model.
    Strugarek M; Vauchelet N; Zubelli JP
    Math Biosci Eng; 2018 Aug; 15(4):961-991. PubMed ID: 30380317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A metapopulation approach to identify targets for Wolbachia-based dengue control.
    Reyna-Lara A; Soriano-Paños D; Arias-Castro JH; Martínez HJ; Gómez-Gardeñes J
    Chaos; 2022 Apr; 32(4):041105. PubMed ID: 35489839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and zika.
    Xue L; Fang X; Hyman JM
    PLoS Negl Trop Dis; 2018 Jul; 12(7):e0006666. PubMed ID: 30059498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia.
    Taghikhani R; Sharomi O; Gumel AB
    Math Biosci; 2020 Oct; 328():108426. PubMed ID: 32712316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study.
    Pinto SB; Riback TIS; Sylvestre G; Costa G; Peixoto J; Dias FBS; Tanamas SK; Simmons CP; Dufault SM; Ryan PA; O'Neill SL; Muzzi FC; Kutcher S; Montgomery J; Green BR; Smithyman R; Eppinghaus A; Saraceni V; Durovni B; Anders KL; Moreira LA
    PLoS Negl Trop Dis; 2021 Jul; 15(7):e0009556. PubMed ID: 34252106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations.
    Campo-Duarte DE; Vasilieva O; Cardona-Salgado D; Svinin M
    J Math Biol; 2018 Jun; 76(7):1907-1950. PubMed ID: 29429122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control.
    Bliman PA; Aronna MS; Coelho FC; da Silva MAHB
    J Math Biol; 2018 Apr; 76(5):1269-1300. PubMed ID: 28856446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hindrances to bistable front propagation: application to Wolbachia invasion.
    Nadin G; Strugarek M; Vauchelet N
    J Math Biol; 2018 May; 76(6):1489-1533. PubMed ID: 28939962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission.
    Zheng B; Tang M; Yu J; Qiu J
    J Math Biol; 2018 Jan; 76(1-2):235-263. PubMed ID: 28573466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing Wolbachia in the wild mosquito population: The effects of wind and critical patch size.
    Liu YF; Sun GW; Wang L; Guo ZM
    Math Biosci Eng; 2019 May; 16(5):4399-4414. PubMed ID: 31499668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population.
    Li Y; Liu X
    J Theor Biol; 2018 Jul; 448():53-65. PubMed ID: 29625205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wolbachia spread dynamics in multi-regimes of environmental conditions.
    Hu L; Huang M; Tang M; Yu J; Zheng B
    J Theor Biol; 2019 Feb; 462():247-258. PubMed ID: 30448462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation.
    Zhang X; Tang S; Cheke RA; Zhu H
    Bull Math Biol; 2016 Oct; 78(10):1968-2010. PubMed ID: 27734242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Wolbachia-induced sterility and virus protection to fight Aedes albopictus-borne viruses.
    Moretti R; Yen PS; Houé V; Lampazzi E; Desiderio A; Failloux AB; Calvitti M
    PLoS Negl Trop Dis; 2018 Jul; 12(7):e0006626. PubMed ID: 30020933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of large-scale deployment of
    Durovni B; Saraceni V; Eppinghaus A; Riback TIS; Moreira LA; Jewell NP; Dufault SM; O'Neill SL; Simmons CP; Tanamas SK; Anders KL
    F1000Res; 2019; 8():1328. PubMed ID: 33447371
    [No Abstract]   [Full Text] [Related]  

  • 16. Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations.
    Zhang X; Tang S; Cheke RA
    Math Biosci; 2015 Nov; 269():164-77. PubMed ID: 26407645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mission Accomplished? We Need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control.
    Ritchie SA; van den Hurk AF; Smout MJ; Staunton KM; Hoffmann AA
    Trends Parasitol; 2018 Mar; 34(3):217-226. PubMed ID: 29396201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial.
    Anders KL; Indriani C; Ahmad RA; Tantowijoyo W; Arguni E; Andari B; Jewell NP; Rances E; O'Neill SL; Simmons CP; Utarini A
    Trials; 2018 May; 19(1):302. PubMed ID: 29855331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease.
    Zhang X; Tang S; Liu Q; Cheke RA; Zhu H
    Math Biosci; 2018 May; 299():58-72. PubMed ID: 29530790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti.
    Turelli M; Barton NH
    Theor Popul Biol; 2017 Jun; 115():45-60. PubMed ID: 28411063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.