These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 30380607)
1. Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles. Cotin G; Kiefer C; Perton F; Ihiawakrim D; Blanco-Andujar C; Moldovan S; Lefevre C; Ersen O; Pichon B; Mertz D; Bégin-Colin S Nanomaterials (Basel); 2018 Oct; 8(11):. PubMed ID: 30380607 [TBL] [Abstract][Full Text] [Related]
2. A Confinement-Driven Nucleation Mechanism of Metal Oxide Nanoparticles Obtained via Thermal Decomposition in Organic Media. Cotin G; Heinrich B; Perton F; Kiefer C; Francius G; Mertz D; Freis B; Pichon B; Strub JM; Cianférani S; Ortiz Peña N; Ihiawakrim D; Portehault D; Ersen O; Khammari A; Picher M; Banhart F; Sanchez C; Begin-Colin S Small; 2022 May; 18(20):e2200414. PubMed ID: 35426247 [TBL] [Abstract][Full Text] [Related]
3. Iron Stearate Structures: An Original Tool for Nanoparticles Design. Perton F; Cotin G; Kiefer C; Strub JM; Cianferani S; Greneche JM; Parizel N; Heinrich B; Pichon B; Mertz D; Begin-Colin S Inorg Chem; 2021 Aug; 60(16):12445-12456. PubMed ID: 34339179 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Hufschmid R; Arami H; Ferguson RM; Gonzales M; Teeman E; Brush LN; Browning ND; Krishnan KM Nanoscale; 2015 Jul; 7(25):11142-54. PubMed ID: 26059262 [TBL] [Abstract][Full Text] [Related]
5. Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. Hai HT; Yang HT; Kura H; Hasegawa D; Ogata Y; Takahashi M; Ogawa T J Colloid Interface Sci; 2010 Jun; 346(1):37-42. PubMed ID: 20219207 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and high-resolution structural and chemical analysis of iron-manganese-oxide core-shell nanocubes. Ullrich A; Rahman MM; Longo P; Horn S Sci Rep; 2019 Dec; 9(1):19264. PubMed ID: 31848357 [TBL] [Abstract][Full Text] [Related]
7. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering. Lassenberger A; Grünewald TA; van Oostrum PDJ; Rennhofer H; Amenitsch H; Zirbs R; Lichtenegger HC; Reimhult E Chem Mater; 2017 May; 29(10):4511-4522. PubMed ID: 28572705 [TBL] [Abstract][Full Text] [Related]
8. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties-From Suspension to In Vitro Studies. Freis B; Ramirez MLA; Kiefer C; Harlepp S; Iacovita C; Henoumont C; Affolter-Zbaraszczuk C; Meyer F; Mertz D; Boos A; Tasso M; Furgiuele S; Journe F; Saussez S; Bégin-Colin S; Laurent S Pharmaceutics; 2023 Mar; 15(4):. PubMed ID: 37111590 [TBL] [Abstract][Full Text] [Related]
9. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Wetterskog E; Agthe M; Mayence A; Grins J; Wang D; Rana S; Ahniyaz A; Salazar-Alvarez G; Bergström L Sci Technol Adv Mater; 2014 Oct; 15(5):055010. PubMed ID: 27877722 [TBL] [Abstract][Full Text] [Related]
10. Shape control of iron oxide nanoparticles. Shavel A; Liz-Marzán LM Phys Chem Chem Phys; 2009 May; 11(19):3762-6. PubMed ID: 19421489 [TBL] [Abstract][Full Text] [Related]
11. Surfactant-driven optimization of iron-based nanoparticle synthesis: a study on magnetic hyperthermia and endothelial cell uptake. Riahi K; Dirba I; Ablets Y; Filatova A; Sultana SN; Adabifiroozjaei E; Molina-Luna L; Nuber UA; Gutfleisch O Nanoscale Adv; 2023 Oct; 5(21):5859-5869. PubMed ID: 37881718 [TBL] [Abstract][Full Text] [Related]
12. Precise Size Control of the Growth of Fe Muro-Cruces J; Roca AG; López-Ortega A; Fantechi E; Del-Pozo-Bueno D; Estradé S; Peiró F; Sepúlveda B; Pineider F; Sangregorio C; Nogues J ACS Nano; 2019 Jul; 13(7):7716-7728. PubMed ID: 31173684 [TBL] [Abstract][Full Text] [Related]
13. A low cost synthesis method for functionalised iron oxide nanoparticles for magnetic hyperthermia from readily available materials. Bear JC; Yu B; Blanco-Andujar C; McNaughter PD; Southern P; Mafina MK; Pankhurst QA; Parkin IP Faraday Discuss; 2014; 175():83-95. PubMed ID: 25266667 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Yue-Jian C; Juan T; Fei X; Jia-Bi Z; Ning G; Yi-Hua Z; Ye D; Liang G Drug Dev Ind Pharm; 2010 Oct; 36(10):1235-44. PubMed ID: 20818962 [TBL] [Abstract][Full Text] [Related]
15. Little Adjustments Significantly Simplify the Gram-Scale Synthesis of High-Quality Iron Oxide Nanocubes. Kampferbeck M; Klauke LR; Weller H; Vossmeyer T Langmuir; 2021 Aug; 37(32):9851-9857. PubMed ID: 34343009 [TBL] [Abstract][Full Text] [Related]
17. Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition. Nahorniak M; Pasetto P; Greneche JM; Samaryk V; Auguste S; Rousseau A; Nosova N; Varvarenko S Beilstein J Nanotechnol; 2023; 14():11-22. PubMed ID: 36703905 [TBL] [Abstract][Full Text] [Related]
18. Low-cost one-pot synthesis of hydrophobic and hydrophilic monodispersed iron oxide nanoparticles. Reja S; Kumar M; Vasudevan S Nanoscale Adv; 2024 Jul; 6(15):3857-3864. PubMed ID: 39050951 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of alpha-Fe nanoparticles by solventless thermal decomposition. Cha HG; Kim YH; Kim CW; Lee DK; Moon SD; Kwon HW; Kang YS J Nanosci Nanotechnol; 2006 Nov; 6(11):3412-6. PubMed ID: 17252778 [TBL] [Abstract][Full Text] [Related]
20. Cubic Mesocrystal Magnetic Iron Oxide Nanoparticle Formation by Oriented Aggregation of Cubes in Organic Media: A Rational Design to Enhance the Magnetic Hyperthermia Efficiency. Egea-Benavente D; Díaz-Ufano C; Gallo-Cordova Á; Palomares FJ; Cuya Huaman JL; Barber DF; Morales MDP; Balachandran J ACS Appl Mater Interfaces; 2023 Jul; 15(27):32162-32176. PubMed ID: 37390112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]