These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30380644)

  • 1. Time Sequential Single-Cell Patterning with High Efficiency and High Density.
    Liu Y; Ren D; Ling X; Liang W; Li J; You Z; Yalikun Y; Tanaka Y
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices.
    Chen H; Sun J; Wolvetang E; Cooper-White J
    Lab Chip; 2015 Feb; 15(4):1072-83. PubMed ID: 25519528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter screening in microfluidics based hydrodynamic single-cell trapping.
    Deng B; Li XF; Chen DY; You LD; Wang JB; Chen J
    ScientificWorldJournal; 2014; 2014():929163. PubMed ID: 25013872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic device enabling deterministic single cell trapping and release.
    Chai H; Feng Y; Liang F; Wang W
    Lab Chip; 2021 Jun; 21(13):2486-2494. PubMed ID: 34047733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.
    Khalili AA; Ahmad MR
    Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic device enabling high-efficiency single cell trapping.
    Jin D; Deng B; Li JX; Cai W; Tu L; Chen J; Wu Q; Wang WH
    Biomicrofluidics; 2015 Jan; 9(1):014101. PubMed ID: 25610513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluidic circuit based, high-efficiency and large-scale single cell trap.
    Mi L; Huang L; Li J; Xu G; Wu Q; Wang W
    Lab Chip; 2016 Nov; 16(23):4507-4511. PubMed ID: 27747339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapping and releasing of single microparticles and cells in a microfluidic chip.
    Lv D; Zhang X; Xu M; Cao W; Liu X; Deng J; Yang J; Hu N
    Electrophoresis; 2022 Nov; 43(21-22):2165-2174. PubMed ID: 35730632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic shuttling for deterministic high-efficiency multiple single-cell capture in a microfluidic chip.
    He CK; Chen YW; Wang SH; Hsu CH
    Lab Chip; 2019 Apr; 19(8):1370-1377. PubMed ID: 30888367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis.
    Ghanbari M; Nezhad AS; Agudelo CG; Packirisamy M; Geitmann A
    J Biosci Bioeng; 2014 Apr; 117(4):504-11. PubMed ID: 24231375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis.
    Briones J; Espulgar W; Koyama S; Takamatsu H; Tamiya E; Saito M
    Sci Rep; 2021 Jun; 11(1):12995. PubMed ID: 34155296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of microfluidic microsphere-trap arrays.
    Xu X; Sarder P; Li Z; Nehorai A
    Biomicrofluidics; 2013; 7(1):14112. PubMed ID: 24404004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivation and quantitative single-cell analysis of Saccharomyces cerevisiae on a multifunctional microfluidic device.
    Stratz S; Verboket PE; Hasler K; Dittrich PS
    Electrophoresis; 2018 Feb; 39(3):540-547. PubMed ID: 28880404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pneumatic microfluidics-based multiplex single-cell array.
    Zhao L; Ma C; Shen S; Tian C; Xu J; Tu Q; Li T; Wang Y; Wang J
    Biosens Bioelectron; 2016 Apr; 78():423-430. PubMed ID: 26655183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile single-cell patterning strategy based on harbor-like microwell microfluidics.
    Sun Y; Liu Y; Sun D; Liu K; Li Y; Liu Y; Zhang S
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38772387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An acoustofluidic trap and transfer approach for organizing a high density single cell array.
    Ohiri KA; Kelly ST; Motschman JD; Lin KH; Wood KC; Yellen BB
    Lab Chip; 2018 Jul; 18(14):2124-2133. PubMed ID: 29931016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a microfluidic strategy for trapping and screening single cells.
    Occhetta P; Licini M; Redaelli A; Rasponi M
    Med Eng Phys; 2016 Jan; 38(1):33-40. PubMed ID: 26651214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exosome Purification and Analysis Using a Facile Microfluidic Hydrodynamic Trapping Device.
    Tayebi M; Zhou Y; Tripathi P; Chandramohanadas R; Ai Y
    Anal Chem; 2020 Aug; 92(15):10733-10742. PubMed ID: 32613828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array.
    Chung K; Rivet CA; Kemp ML; Lu H
    Anal Chem; 2011 Sep; 83(18):7044-52. PubMed ID: 21809821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.