These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 30380660)
21. Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Ayazi H; Akhavan O; Raoufi M; Varshochian R; Hosseini Motlagh NS; Atyabi F Colloids Surf B Biointerfaces; 2020 Feb; 186():110712. PubMed ID: 31846894 [TBL] [Abstract][Full Text] [Related]
22. Molecular Dynamics Simulations of the pH-Dependent Adsorption of Doxorubicin on Carbon Quantum Dots. Wolski P Mol Pharm; 2021 Jan; 18(1):257-266. PubMed ID: 33325232 [TBL] [Abstract][Full Text] [Related]
23. Adsorption of Antifungal Drugs Inside Pristine and Functionalized Fullerenes and Nanotubes: DFT Investigation. Pieńko T; Grudzień M; Taciak PP; Mazurek AP Curr Comput Aided Drug Des; 2017; 13(3):177-185. PubMed ID: 28260509 [TBL] [Abstract][Full Text] [Related]
24. An MD-based systematic study on the mechanical characteristics of a novel hybrid CNT/graphene drug carrier. Mohebali M; Rezapour N; Shadmani P; Montazeri A J Mol Model; 2020 Aug; 26(9):241. PubMed ID: 32814981 [TBL] [Abstract][Full Text] [Related]
25. In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation. Chen Y; Yang W; Chang B; Hu H; Fang X; Sha X Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):406-12. PubMed ID: 23816639 [TBL] [Abstract][Full Text] [Related]
26. Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system. Rao Z; Ge H; Liu L; Zhu C; Min L; Liu M; Fan L; Li D Int J Biol Macromol; 2018 Feb; 107(Pt A):1184-1192. PubMed ID: 28951302 [TBL] [Abstract][Full Text] [Related]
27. Cu (II)-porphyrin metal-organic framework/graphene oxide: synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment. Gharehdaghi Z; Rahimi R; Naghib SM; Molaabasi F J Biol Inorg Chem; 2021 Sep; 26(6):689-704. PubMed ID: 34420089 [TBL] [Abstract][Full Text] [Related]
28. Pegylated and folic acid functionalized carbon nanotubes as pH controlled carriers of doxorubicin. Molecular dynamics analysis of the stability and drug release mechanism. Wolski P; Nieszporek K; Panczyk T Phys Chem Chem Phys; 2017 Mar; 19(13):9300-9312. PubMed ID: 28323298 [TBL] [Abstract][Full Text] [Related]
29. Multimodal, pH Sensitive, and Magnetically Assisted Carrier of Doxorubicin Designed and Analyzed by Means of Computer Simulations. Wolski P; Nieszporek K; Panczyk T Langmuir; 2018 Feb; 34(7):2543-2550. PubMed ID: 29376380 [TBL] [Abstract][Full Text] [Related]
30. Molecular dynamics simulation of doxorubicin adsorption on a bundle of functionalized CNT. Izadyar A; Farhadian N; Chenarani N J Biomol Struct Dyn; 2016 Aug; 34(8):1797-805. PubMed ID: 26375507 [TBL] [Abstract][Full Text] [Related]
31. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. Wang C; Zhang Z; Chen B; Gu L; Li Y; Yu S J Colloid Interface Sci; 2018 Apr; 516():332-341. PubMed ID: 29408121 [TBL] [Abstract][Full Text] [Related]
32. Description of Release Process of Doxorubicin from Modified Carbon Nanotubes. Chudoba D; Jażdżewska M; Łudzik K; Wołoszczuk S; Juszyńska-Gałązka E; Kościński M Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769431 [TBL] [Abstract][Full Text] [Related]
33. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449 [TBL] [Abstract][Full Text] [Related]
34. Cytosine-Rich DNA Fragments Covalently Bound to Carbon Nanotube as Factors Triggering Doxorubicin Release at Acidic pH. A Molecular Dynamics Study. Wolski P; Nieszporek K; Panczyk T Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445172 [TBL] [Abstract][Full Text] [Related]
35. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Zhou T; Zhou X; Xing D Biomaterials; 2014 Apr; 35(13):4185-94. PubMed ID: 24513318 [TBL] [Abstract][Full Text] [Related]
36. Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy. Ma N; Liu J; He W; Li Z; Luan Y; Song Y; Garg S J Colloid Interface Sci; 2017 Mar; 490():598-607. PubMed ID: 27923144 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of a novel thermo/pH sensitive nanogel based on salep modified graphene oxide for drug release. Bardajee GR; Hooshyar Z; Farsi M; Mobini A; Sang G Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():558-565. PubMed ID: 28024622 [TBL] [Abstract][Full Text] [Related]
38. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study. Hashemzadeh H; Raissi H J Mol Model; 2017 Aug; 23(8):222. PubMed ID: 28702805 [TBL] [Abstract][Full Text] [Related]
39. Kinetic and Equilibrium Studies of Doxorubicin Adsorption onto Carbon Nanotubes. Chudoba D; Łudzik K; Jażdżewska M; Wołoszczuk S Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33153137 [TBL] [Abstract][Full Text] [Related]
40. Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Lv Y; Tao L; Annie Bligh SW; Yang H; Pan Q; Zhu L Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():652-660. PubMed ID: 26652419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]