These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3038076)

  • 1. Pseudomonas mutant strains that accumulate androstane and seco-androstane intermediates from bile acids.
    Leppik RA; Sinden DJ
    Biochem J; 1987 Apr; 243(1):15-21. PubMed ID: 3038076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steroid catechol degradation: disecoandrostane intermediates accumulated by Pseudomonas transposon mutant strains.
    Leppik RA
    J Gen Microbiol; 1989 Jul; 135(7):1979-88. PubMed ID: 2559155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A catecholic 9,10-seco steroid as a product of aerobic catabolism of cholic acid by a Pseudomonas sp.
    Park RJ; Dunn NW; Ide JA
    Steroids; 1986; 48(5-6):439-50. PubMed ID: 3445293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590 under anaerobic conditions.
    Owen RW; Bilton RF
    Biochem J; 1983 Dec; 216(3):641-54. PubMed ID: 6667260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of unsaturated bile acids and androstanes by human faecal bacteria.
    Owen RW; Bilton RF
    J Steroid Biochem; 1985 Jun; 22(6):817-22. PubMed ID: 4021485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenolic 9,10-secosteroids as products of the catabolism of bile acids by a Pseudomonas sp.
    Park RJ
    Steroids; 1984 Aug; 44(2):175-93. PubMed ID: 6537051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The major neutral products of the aerobic catabolism of cattle bile by Pseudomonas sp. ATCC 31752.
    Park RJ
    Steroids; 1981 Oct; 38(4):383-95. PubMed ID: 7314155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.
    Bragin EY; Shtratnikova VY; Dovbnya DV; Schelkunov MI; Pekov YA; Malakho SG; Egorova OV; Ivashina TV; Sokolov SL; Ashapkin VV; Donova MV
    J Steroid Biochem Mol Biol; 2013 Nov; 138():41-53. PubMed ID: 23474435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of bile acids by clostridia.
    Owen RW
    J Med Microbiol; 1985 Oct; 20(2):233-8. PubMed ID: 2864454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of chenodeoxycholic acid by Pseudomonas species NCIB 10590 under anaerobic conditions.
    Owen RW; Hill MJ; Bilton RF
    J Lipid Res; 1983 Sep; 24(9):1109-18. PubMed ID: 6631240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of ursodeoxycholic acid by Pseudomonas sp NCIB 10590.
    Owen RW; Wait R; Bilton RF
    J Lipid Res; 1988 Apr; 29(4):459-68. PubMed ID: 3392463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590.
    Tenneson ME; Baty JD; Bilton RF; Mason AN
    Biochem J; 1979 Dec; 184(3):613-8. PubMed ID: 540054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas.
    Luengo JM; Olivera ER
    Methods Mol Biol; 2017; 1645():109-142. PubMed ID: 28710624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genetics of bile acid degradation in Pseudomonas spp.: location and cloning of catabolic genes.
    Leppik RA
    J Gen Microbiol; 1989 Jul; 135(7):1989-96. PubMed ID: 2559156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Characterization of Some Genes, Enzymes, and Metabolic Intermediates Belonging to the Bile Acid Aerobic Catabolic Pathway from Pseudomonas.
    Luengo JM; Olivera ER
    Methods Mol Biol; 2023; 2704():51-83. PubMed ID: 37642838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biotransformation of hyodeoxycholic acid by Pseudomonas sp. NCIB 10590 under anaerobic conditions.
    Owen RW; Bilton RF
    J Steroid Biochem; 1983 Sep; 19(3):1355-62. PubMed ID: 6621041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21.
    Barrientos Á; Merino E; Casabon I; Rodríguez J; Crowe AM; Holert J; Philipp B; Eltis LD; Olivera ER; Luengo JM
    Environ Microbiol; 2015 Jan; 17(1):47-63. PubMed ID: 24428272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unexplored pathway for degradation of cholate requires a 7α-hydroxysteroid dehydratase and contributes to a broad metabolic repertoire for the utilization of bile salts in Novosphingobium sp. strain Chol11.
    Yücel O; Drees S; Jagmann N; Patschkowski T; Philipp B
    Environ Microbiol; 2016 Dec; 18(12):5187-5203. PubMed ID: 27648822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic-, chenodeoxycholic-, and deoxycholic acid by lecithinase-lipase-negative clostridia].
    Edenharder R; Deser HJ
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981; 174(1-2):91-104. PubMed ID: 7324622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of genes involved in inversion of stereochemistry of a C-12 hydroxyl group in the catabolism of cholic acid by Comamonas testosteroni TA441.
    Horinouchi M; Hayashi T; Koshino H; Malon M; Yamamoto T; Kudo T
    J Bacteriol; 2008 Aug; 190(16):5545-54. PubMed ID: 18539741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.