BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 30380761)

  • 21. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.
    Lee IS; Cho DH; Kim KS; Kim KH; Park J; Kim Y; Jung JH; Kim K; Jung HJ; Jang HJ
    Immunopharmacol Immunotoxicol; 2018 Feb; 40(1):83-90. PubMed ID: 29299941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IL-17 Aggravates
    Ding F; Han L; Fu Q; Fan X; Tang R; Lv C; Xue Y; Tian X; Zhang M
    Front Immunol; 2021; 12():811803. PubMed ID: 35095906
    [No Abstract]   [Full Text] [Related]  

  • 23. NF-kappaB Signaling in Chronic Inflammatory Airway Disease.
    Schuliga M
    Biomolecules; 2015 Jun; 5(3):1266-83. PubMed ID: 26131974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications.
    Tamimi A; Serdarevic D; Hanania NA
    Respir Med; 2012 Mar; 106(3):319-28. PubMed ID: 22196881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting respiratory microbiomes in COPD and bronchiectasis.
    Mac Aogáin M; Tiew PY; Jaggi TK; Narayana JK; Singh S; Hansbro PM; Segal LN; Chotirmall SH
    Expert Rev Respir Med; 2024; 18(3-4):111-125. PubMed ID: 38743428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel technique to explore the functions of bronchial mucosal T cells in chronic obstructive pulmonary disease: application to cytotoxicity and cytokine immunoreactivity.
    Lethbridge MW; Kemeny DM; Ratoff JC; O'Connor BJ; Hawrylowicz CM; Corrigan CJ
    Clin Exp Immunol; 2010 Sep; 161(3):560-9. PubMed ID: 20529083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IL-33 Mediated Inflammation in Chronic Respiratory Diseases-Understanding the Role of the Member of IL-1 Superfamily.
    Gabryelska A; Kuna P; Antczak A; Białasiewicz P; Panek M
    Front Immunol; 2019; 10():692. PubMed ID: 31057533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Serotonin receptors 5-HTR2A and 5-HTR2B are involved in cigarette smoke-induced airway inflammation, mucus hypersecretion and airway remodeling in mice.
    Yang T; Wang H; Li Y; Zeng Z; Shen Y; Wan C; Wu Y; Dong J; Chen L; Wen F
    Int Immunopharmacol; 2020 Apr; 81():106036. PubMed ID: 31787571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential expression of pro-inflammatory cytokines in intra-epithelial T cells between trachea and bronchi distinguishes severity of COPD.
    Hodge G; Reynolds PN; Holmes M; Hodge S
    Cytokine; 2012 Dec; 60(3):843-8. PubMed ID: 22929410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative Stress Attenuates TLR3 Responsiveness and Impairs Anti-viral Mechanisms in Bronchial Epithelial Cells From COPD and Asthma Patients.
    Menzel M; Ramu S; Calvén J; Olejnicka B; Sverrild A; Porsbjerg C; Tufvesson E; Bjermer L; Akbarshahi H; Uller L
    Front Immunol; 2019; 10():2765. PubMed ID: 31849956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remodeling in asthma and chronic obstructive lung disease.
    Jeffery PK
    Am J Respir Crit Care Med; 2001 Nov; 164(10 Pt 2):S28-38. PubMed ID: 11734464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of pendrin as a common mediator for mucus production in bronchial asthma and chronic obstructive pulmonary disease.
    Nakao I; Kanaji S; Ohta S; Matsushita H; Arima K; Yuyama N; Yamaya M; Nakayama K; Kubo H; Watanabe M; Sagara H; Sugiyama K; Tanaka H; Toda S; Hayashi H; Inoue H; Hoshino T; Shiraki A; Inoue M; Suzuki K; Aizawa H; Okinami S; Nagai H; Hasegawa M; Fukuda T; Green ED; Izuhara K
    J Immunol; 2008 May; 180(9):6262-9. PubMed ID: 18424749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evaluation of inflammatory, anti-inflammatory and regulatory factors contributing to the pathogenesis of COPD in airways.
    Vitenberga Z; Pilmane M; Babjoniševa A
    Pathol Res Pract; 2019 Jan; 215(1):97-105. PubMed ID: 30392917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of electroacupuncture at Zusanli (ST36) on inflammatory cytokines in a rat model of smoke-induced chronic obstructive pulmonary disease.
    Geng WY; Liu ZB; Song NN; Geng WY; Zhang GH; Jin WZ; Li L; Cao YX; Zhu DN; Shen LL
    J Integr Med; 2013 May; 11(3):213-9. PubMed ID: 23743164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathologic similarities and differences between asthma and chronic obstructive pulmonary disease.
    Mauad T; Dolhnikoff M
    Curr Opin Pulm Med; 2008 Jan; 14(1):31-8. PubMed ID: 18043273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunology of asthma and chronic obstructive pulmonary disease.
    Barnes PJ
    Nat Rev Immunol; 2008 Mar; 8(3):183-92. PubMed ID: 18274560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD.
    Heijink IH; Brandenburg SM; Noordhoek JA; Slebos DJ; Postma DS; van Oosterhout AJ
    Respir Res; 2011 Aug; 12(1):110. PubMed ID: 21861887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease.
    Heijink IH; de Bruin HG; van den Berge M; Bennink LJ; Brandenburg SM; Gosens R; van Oosterhout AJ; Postma DS
    Thorax; 2013 Aug; 68(8):709-16. PubMed ID: 23370438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apoptosis and engulfment by bronchial epithelial cells. Implications for allergic airway inflammation.
    Penberthy KK; Juncadella IJ; Ravichandran KS
    Ann Am Thorac Soc; 2014 Dec; 11 Suppl 5(Suppl 5):S259-62. PubMed ID: 25525729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adrenomedullin mediates pro-angiogenic and pro-inflammatory cytokines in asthma and COPD.
    Mandal J; Roth M; Papakonstantinou E; Fang L; Savic S; Tamm M; Stolz D
    Pulm Pharmacol Ther; 2019 Jun; 56():8-14. PubMed ID: 30690080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.