These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30380783)

  • 1. Improving Chemical Autoencoder Latent Space and Molecular
    Bjerrum EJ; Sattarov B
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30380783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional Molecule Generation with Recurrent Neural Networks.
    Grisoni F; Moret M; Lingwood R; Schneider G
    J Chem Inf Model; 2020 Mar; 60(3):1175-1183. PubMed ID: 31904964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De Novo Direct Inverse QSPR/QSAR: Chemical Variational Autoencoder and Gaussian Mixture Regression Models.
    Nemoto K; Kaneko H
    J Chem Inf Model; 2023 Feb; 63(3):794-805. PubMed ID: 36635071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative Recurrent Networks for De Novo Drug Design.
    Gupta A; Müller AT; Huisman BJH; Fuchs JA; Schneider P; Schneider G
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29095571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.
    Sattarov B; Baskin II; Horvath D; Marcou G; Bjerrum EJ; Varnek A
    J Chem Inf Model; 2019 Mar; 59(3):1182-1196. PubMed ID: 30785751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Generation of Novel Fragments Using Screening Data, a Dual SMILES Autoencoder, Transfer Learning and Syntax Correction.
    Bilsland AE; McAulay K; West R; Pugliese A; Bower J
    J Chem Inf Model; 2021 Jun; 61(6):2547-2559. PubMed ID: 34029470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Molecular Heteroencoders with Latent Space Arithmetic: Atomic Descriptors and Molecular Operators.
    Gao X; Baimacheva N; Aires-de-Sousa J
    Molecules; 2024 Aug; 29(16):. PubMed ID: 39203047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to SMILES: BAN-based strategies to improve latent representation learning from molecules.
    Wu CK; Zhang XC; Yang ZJ; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34427296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Randomized SMILES strings improve the quality of molecular generative models.
    Arús-Pous J; Johansson SV; Prykhodko O; Bjerrum EJ; Tyrchan C; Reymond JL; Chen H; Engkvist O
    J Cheminform; 2019 Nov; 11(1):71. PubMed ID: 33430971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UnCorrupt SMILES: a novel approach to de novo design.
    Schoenmaker L; Béquignon OJM; Jespers W; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):22. PubMed ID: 36788579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformer-Based Representation of Organic Molecules for Potential Modeling of Physicochemical Properties.
    Pérez-Correa I; Giunta PD; Mariño FJ; Francesconi JA
    J Chem Inf Model; 2023 Dec; 63(24):7676-7688. PubMed ID: 38062559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of Chemical Space Guided by PixelCNN for Fragment-Based De Novo Drug Discovery.
    Noguchi S; Inoue J
    J Chem Inf Model; 2022 Dec; 62(23):5988-6001. PubMed ID: 36454646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Generative Autoencoder in De Novo Molecular Design.
    Blaschke T; Olivecrona M; Engkvist O; Bajorath J; Chen H
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29235269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory augmented recurrent neural networks for de-novo drug design.
    Suresh N; Chinnakonda Ashok Kumar N; Subramanian S; Srinivasa G
    PLoS One; 2022; 17(6):e0269461. PubMed ID: 35737661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder.
    Li C; Yao J; Wei W; Niu Z; Zeng X; Li J; Wang J
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4852-4861. PubMed ID: 35171779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small molecule autoencoders: architecture engineering to optimize latent space utility and sustainability.
    Oestreich M; Ewert I; Becker M
    J Cheminform; 2024 Mar; 16(1):26. PubMed ID: 38444032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES.
    Bjerrum EJ; Margreitter C; Blaschke T; Kolarova S; de Castro RL
    J Comput Aided Mol Des; 2023 Aug; 37(8):373-394. PubMed ID: 37329395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep reinforcement learning for de novo drug design.
    Popova M; Isayev O; Tropsha A
    Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical and Self-Attended Sequence Autoencoder.
    Chien JT; Wang CW
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):4975-4986. PubMed ID: 33755556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.