These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 30380854)
21. MicroRNAs mediated targeting on the Yin-yang dynamics of DNA methylation in disease and development. Tu J; Liao J; Luk AC; Tang NL; Chan WY; Lee TL Int J Biochem Cell Biol; 2015 Oct; 67():115-20. PubMed ID: 25979370 [TBL] [Abstract][Full Text] [Related]
22. Tissue-Specific Differences in DNA Modifications (5-Hydroxymethylcytosine, 5-Formylcytosine, 5-Carboxylcytosine and 5-Hydroxymethyluracil) and Their Interrelationships. Gackowski D; Zarakowska E; Starczak M; Modrzejewska M; Olinski R PLoS One; 2015; 10(12):e0144859. PubMed ID: 26660343 [TBL] [Abstract][Full Text] [Related]
23. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Wang L; Zhou Y; Xu L; Xiao R; Lu X; Chen L; Chong J; Li H; He C; Fu XD; Wang D Nature; 2015 Jul; 523(7562):621-5. PubMed ID: 26123024 [TBL] [Abstract][Full Text] [Related]
24. Recognition of modified cytosine variants by the DNA-binding domain of methyl-directed endonuclease McrBC. Zagorskaitė E; Manakova E; Sasnauskas G FEBS Lett; 2018 Oct; 592(19):3335-3345. PubMed ID: 30194838 [TBL] [Abstract][Full Text] [Related]
25. DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. Hong S; Cheng X Adv Exp Med Biol; 2016; 945():321-341. PubMed ID: 27826845 [TBL] [Abstract][Full Text] [Related]
26. Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution. Zhu C; Gao Y; Guo H; Xia B; Song J; Wu X; Zeng H; Kee K; Tang F; Yi C Cell Stem Cell; 2017 May; 20(5):720-731.e5. PubMed ID: 28343982 [TBL] [Abstract][Full Text] [Related]
27. Dynamics of a DNA Mismatch Site Held in Confinement Discriminate Epigenetic Modifications of Cytosine. Johnson RP; Fleming AM; Perera RT; Burrows CJ; White HS J Am Chem Soc; 2017 Feb; 139(7):2750-2756. PubMed ID: 28125225 [TBL] [Abstract][Full Text] [Related]
28. Quantification of 5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine from the blood of cancer patients by an enzyme-based immunoassay. Chowdhury B; Cho IH; Hahn N; Irudayaraj J Anal Chim Acta; 2014 Dec; 852():212-7. PubMed ID: 25441900 [TBL] [Abstract][Full Text] [Related]
29. Deciphering Epigenetic Cytosine Modifications by Direct Molecular Recognition. Kubik G; Summerer D ACS Chem Biol; 2015 Jul; 10(7):1580-9. PubMed ID: 25897631 [TBL] [Abstract][Full Text] [Related]
30. Determination of 5-Formyluracil via Oxime-Based Nucleotide-Metal Coordination. Zhang K; Fu B; Zou G; Yang W; Yan S; Tian T; Zhou X Chembiochem; 2022 Sep; 23(18):e202200355. PubMed ID: 35849116 [TBL] [Abstract][Full Text] [Related]
31. Systematic prediction of DNA shape changes due to CpG methylation explains epigenetic effects on protein-DNA binding. Rao S; Chiu TP; Kribelbauer JF; Mann RS; Bussemaker HJ; Rohs R Epigenetics Chromatin; 2018 Feb; 11(1):6. PubMed ID: 29409522 [TBL] [Abstract][Full Text] [Related]
32. Structure and dynamics of H. pylori 98-10 C5-cytosine specific DNA methyltransferase in complex with S-adenosyl-l-methionine and DNA. Singh S; Tanneeru K; Guruprasad L Mol Biosyst; 2016 Oct; 12(10):3111-23. PubMed ID: 27470658 [TBL] [Abstract][Full Text] [Related]
33. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Xia B; Han D; Lu X; Sun Z; Zhou A; Yin Q; Zeng H; Liu M; Jiang X; Xie W; He C; Yi C Nat Methods; 2015 Nov; 12(11):1047-50. PubMed ID: 26344045 [TBL] [Abstract][Full Text] [Related]
34. The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals. Zhang HY; Xiong J; Qi BL; Feng YQ; Yuan BF Chem Commun (Camb); 2016 Jan; 52(4):737-40. PubMed ID: 26562407 [TBL] [Abstract][Full Text] [Related]
35. Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq. Wu H; Wu X; Zhang Y Nat Protoc; 2016 Jun; 11(6):1081-100. PubMed ID: 27172168 [TBL] [Abstract][Full Text] [Related]
36. Recognition of Oxidized 5-Methylcytosine Derivatives in DNA by Natural and Engineered Protein Scaffolds. Muñoz-López Á; Summerer D Chem Rec; 2018 Jan; 18(1):105-116. PubMed ID: 29251421 [TBL] [Abstract][Full Text] [Related]
37. DNA-supramolecule conjugates in theranostics. Chen K; Fu T; Sun W; Huang Q; Zhang P; Zhao Z; Zhang X; Tan W Theranostics; 2019; 9(11):3262-3279. PubMed ID: 31244953 [TBL] [Abstract][Full Text] [Related]
38. Significant strength of charged DNA-protein π-π interactions: a preliminary study of cytosine. Wells RA; Kellie JL; Wetmore SD J Phys Chem B; 2013 Sep; 117(36):10462-74. PubMed ID: 23991905 [TBL] [Abstract][Full Text] [Related]
39. Supramolecular modeling of mono-copper enzyme active sites with calix[6]arene-based funnel complexes. Le Poul N; Le Mest Y; Jabin I; Reinaud O Acc Chem Res; 2015 Jul; 48(7):2097-106. PubMed ID: 26103534 [TBL] [Abstract][Full Text] [Related]
40. Structure of Naegleria Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA. Hashimoto H; Pais JE; Dai N; Corrêa IR; Zhang X; Zheng Y; Cheng X Nucleic Acids Res; 2015 Dec; 43(22):10713-21. PubMed ID: 26323320 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]