These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 30381060)
1. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data. Wang F; Lei X; Wu FX Curr Med Chem; 2020; 27(32):5340-5350. PubMed ID: 30381060 [TBL] [Abstract][Full Text] [Related]
2. Influence of batch effect correction methods on drug induced differential gene expression profiles. Zhou W; Koudijs KKM; Böhringer S BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848 [TBL] [Abstract][Full Text] [Related]
3. A review of connectivity map and computational approaches in pharmacogenomics. Musa A; Ghoraie LS; Zhang SD; Glazko G; Yli-Harja O; Dehmer M; Haibe-Kains B; Emmert-Streib F Brief Bioinform; 2018 May; 19(3):506-523. PubMed ID: 28069634 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery. Wang Y; Yella J; Jegga AG Methods Mol Biol; 2019; 1903():73-95. PubMed ID: 30547437 [TBL] [Abstract][Full Text] [Related]
5. A Review of Recent Developments and Progress in Computational Drug Repositioning. Shi W; Chen X; Deng L Curr Pharm Des; 2020; 26(26):3059-3068. PubMed ID: 31951162 [TBL] [Abstract][Full Text] [Related]
6. Accurate Drug Repositioning through Non-tissue-Specific Core Signatures from Cancer Transcriptomes. Xu C; Ai D; Shi D; Suo S; Chen X; Yan Y; Cao Y; Zhang R; Sun N; Chen W; McDermott J; Zhang S; Zeng Y; Han JJ Cell Rep; 2018 Oct; 25(2):523-535.e5. PubMed ID: 30304690 [TBL] [Abstract][Full Text] [Related]
7. Identifying Gene Signatures for Cancer Drug Repositioning Based on Sample Clustering. Wang F; Ding Y; Lei X; Liao B; Wu FX IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):953-965. PubMed ID: 32845842 [TBL] [Abstract][Full Text] [Related]
8. Integrating LINCS Data to Evaluate Cancer Transcriptome Modifying Potential of Small-molecule Compounds for Drug Repositioning. Zhao Y; Liu Y; Bai H Comb Chem High Throughput Screen; 2021; 24(9):1340-1350. PubMed ID: 33109034 [TBL] [Abstract][Full Text] [Related]
9. Statistically controlled identification of differentially expressed genes in one-to-one cell line comparisons of the CMAP database for drug repositioning. He J; Yan H; Cai H; Li X; Guan Q; Zheng W; Chen R; Liu H; Song K; Guo Z; Wang X J Transl Med; 2017 Sep; 15(1):198. PubMed ID: 28962576 [TBL] [Abstract][Full Text] [Related]
10. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures. Emon MA; Domingo-Fernández D; Hoyt CT; Hofmann-Apitius M BMC Bioinformatics; 2020 Jun; 21(1):231. PubMed ID: 32503412 [TBL] [Abstract][Full Text] [Related]
11. Computational Drug Repositioning with Random Walk on a Heterogeneous Network. Luo H; Wang J; Li M; Luo J; Ni P; Zhao K; Wu FX; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1890-1900. PubMed ID: 29994051 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic-Guided Drug Repositioning Supported by a New Bioinformatics Search Tool: geneXpharma. Turanli B; Gulfidan G; Arga KY OMICS; 2017 Oct; 21(10):584-591. PubMed ID: 29049014 [TBL] [Abstract][Full Text] [Related]
13. DMAP: a connectivity map database to enable identification of novel drug repositioning candidates. Huang H; Nguyen T; Ibrahim S; Shantharam S; Yue Z; Chen JY BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26423722 [TBL] [Abstract][Full Text] [Related]
14. Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures. Lee H; Kang S; Kim W PLoS One; 2016; 11(3):e0150460. PubMed ID: 26954019 [TBL] [Abstract][Full Text] [Related]
15. Predicting drug-induced transcriptome responses of a wide range of human cell lines by a novel tensor-train decomposition algorithm. Iwata M; Yuan L; Zhao Q; Tabei Y; Berenger F; Sawada R; Akiyoshi S; Hamano M; Yamanishi Y Bioinformatics; 2019 Jul; 35(14):i191-i199. PubMed ID: 31510663 [TBL] [Abstract][Full Text] [Related]
16. MD-Miner: a network-based approach for personalized drug repositioning. Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195 [TBL] [Abstract][Full Text] [Related]
17. Computational Drug Repositioning: A Lateral Approach to Traditional Drug Discovery? Sahu NU; Kharkar PS Curr Top Med Chem; 2016; 16(19):2069-77. PubMed ID: 26881717 [TBL] [Abstract][Full Text] [Related]
18. Computational Drug-repositioning Approach Identifying Sirolimus as a Potential Therapeutic Option for Inflammatory Dilated Cardiomyopathy. Shibata K; Endo T; Kuribayashi Y Drug Res (Stuttg); 2019 Oct; 69(10):565-571. PubMed ID: 31238376 [TBL] [Abstract][Full Text] [Related]
19. Computational Drug Repurposing: Current Trends. Karaman B; Sippl W Curr Med Chem; 2019; 26(28):5389-5409. PubMed ID: 29848268 [TBL] [Abstract][Full Text] [Related]
20. An integrative approach using real-world data to identify alternative therapeutic uses of existing drugs. Hosomi K; Fujimoto M; Ushio K; Mao L; Kato J; Takada M PLoS One; 2018; 13(10):e0204648. PubMed ID: 30300381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]