BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30381060)

  • 1. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data.
    Wang F; Lei X; Wu FX
    Curr Med Chem; 2020; 27(32):5340-5350. PubMed ID: 30381060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of batch effect correction methods on drug induced differential gene expression profiles.
    Zhou W; Koudijs KKM; Böhringer S
    BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of connectivity map and computational approaches in pharmacogenomics.
    Musa A; Ghoraie LS; Zhang SD; Glazko G; Yli-Harja O; Dehmer M; Haibe-Kains B; Emmert-Streib F
    Brief Bioinform; 2018 May; 19(3):506-523. PubMed ID: 28069634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery.
    Wang Y; Yella J; Jegga AG
    Methods Mol Biol; 2019; 1903():73-95. PubMed ID: 30547437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Recent Developments and Progress in Computational Drug Repositioning.
    Shi W; Chen X; Deng L
    Curr Pharm Des; 2020; 26(26):3059-3068. PubMed ID: 31951162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Drug Repositioning through Non-tissue-Specific Core Signatures from Cancer Transcriptomes.
    Xu C; Ai D; Shi D; Suo S; Chen X; Yan Y; Cao Y; Zhang R; Sun N; Chen W; McDermott J; Zhang S; Zeng Y; Han JJ
    Cell Rep; 2018 Oct; 25(2):523-535.e5. PubMed ID: 30304690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Gene Signatures for Cancer Drug Repositioning Based on Sample Clustering.
    Wang F; Ding Y; Lei X; Liao B; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):953-965. PubMed ID: 32845842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating LINCS Data to Evaluate Cancer Transcriptome Modifying Potential of Small-molecule Compounds for Drug Repositioning.
    Zhao Y; Liu Y; Bai H
    Comb Chem High Throughput Screen; 2021; 24(9):1340-1350. PubMed ID: 33109034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistically controlled identification of differentially expressed genes in one-to-one cell line comparisons of the CMAP database for drug repositioning.
    He J; Yan H; Cai H; Li X; Guan Q; Zheng W; Chen R; Liu H; Song K; Guo Z; Wang X
    J Transl Med; 2017 Sep; 15(1):198. PubMed ID: 28962576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures.
    Emon MA; Domingo-Fernández D; Hoyt CT; Hofmann-Apitius M
    BMC Bioinformatics; 2020 Jun; 21(1):231. PubMed ID: 32503412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Drug Repositioning with Random Walk on a Heterogeneous Network.
    Luo H; Wang J; Li M; Luo J; Ni P; Zhao K; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1890-1900. PubMed ID: 29994051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic-Guided Drug Repositioning Supported by a New Bioinformatics Search Tool: geneXpharma.
    Turanli B; Gulfidan G; Arga KY
    OMICS; 2017 Oct; 21(10):584-591. PubMed ID: 29049014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DMAP: a connectivity map database to enable identification of novel drug repositioning candidates.
    Huang H; Nguyen T; Ibrahim S; Shantharam S; Yue Z; Chen JY
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26423722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures.
    Lee H; Kang S; Kim W
    PLoS One; 2016; 11(3):e0150460. PubMed ID: 26954019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting drug-induced transcriptome responses of a wide range of human cell lines by a novel tensor-train decomposition algorithm.
    Iwata M; Yuan L; Zhao Q; Tabei Y; Berenger F; Sawada R; Akiyoshi S; Hamano M; Yamanishi Y
    Bioinformatics; 2019 Jul; 35(14):i191-i199. PubMed ID: 31510663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MD-Miner: a network-based approach for personalized drug repositioning.
    Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Drug Repositioning: A Lateral Approach to Traditional Drug Discovery?
    Sahu NU; Kharkar PS
    Curr Top Med Chem; 2016; 16(19):2069-77. PubMed ID: 26881717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Drug-repositioning Approach Identifying Sirolimus as a Potential Therapeutic Option for Inflammatory Dilated Cardiomyopathy.
    Shibata K; Endo T; Kuribayashi Y
    Drug Res (Stuttg); 2019 Oct; 69(10):565-571. PubMed ID: 31238376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Drug Repurposing: Current Trends.
    Karaman B; Sippl W
    Curr Med Chem; 2019; 26(28):5389-5409. PubMed ID: 29848268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative approach using real-world data to identify alternative therapeutic uses of existing drugs.
    Hosomi K; Fujimoto M; Ushio K; Mao L; Kato J; Takada M
    PLoS One; 2018; 13(10):e0204648. PubMed ID: 30300381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.