BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30381171)

  • 21. Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties.
    Lee JH; Hwang CE; Son KS; Cho KM
    Food Chem; 2019 Jan; 272():362-371. PubMed ID: 30309556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Aspergillus species inoculation and their enzymatic activities on the formation of volatile components in fermented soybean paste (doenjang).
    Kum SJ; Yang SO; Lee SM; Chang PS; Choi YH; Lee JJ; Hurh BS; Kim YS
    J Agric Food Chem; 2015 Feb; 63(5):1401-18. PubMed ID: 25590895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of Antiobesity Effects Between Gochujangs Produced Using Different Koji Products and Tabasco Hot Sauce in Rats Fed a High-Fat Diet.
    Son HK; Shin HW; Jang ES; Moon BS; Lee CH; Lee JJ
    J Med Food; 2018 Mar; 21(3):233-243. PubMed ID: 29356583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase.
    Liu L; Zhang R; Deng Y; Zhang Y; Xiao J; Huang F; Wen W; Zhang M
    Food Chem; 2017 Apr; 221():636-643. PubMed ID: 27979252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of characteristic components in tea-leaves fermented by Aspergillus pallidofulvus PT-3, Aspergillus sesamicola PT-4 and Penicillium manginii PT-5 using LC-MS metabolomics and HPLC analysis.
    Ma C; Li X; Zheng C; Zhou B; Xu C; Xia T
    Food Chem; 2021 Jul; 350():129228. PubMed ID: 33618088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatio-temporal distribution and natural variation of metabolites in citrus fruits.
    Wang S; Tu H; Wan J; Chen W; Liu X; Luo J; Xu J; Zhang H
    Food Chem; 2016 May; 199():8-17. PubMed ID: 26775938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteinase and glycoside hydrolase production is enhanced in solid-state fermentation by manipulating the carbon and nitrogen fluxes in Aspergillus oryzae.
    Zhao G; Ding LL; Pan ZH; Kong DH; Hadiatullah H; Fan ZC
    Food Chem; 2019 Jan; 271():606-613. PubMed ID: 30236722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of koji by culturing Aspergillus oryzae on nori (Pyropia yezoensis).
    Uchida M; Hideshima N; Araki T
    J Biosci Bioeng; 2019 Feb; 127(2):183-189. PubMed ID: 30146188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeted metabolomics for Aspergillus oryzae-mediated biotransformation of soybean isoflavones, showing variations in primary metabolites.
    Lee S; Seo MH; Oh DK; Lee CH
    Biosci Biotechnol Biochem; 2014; 78(1):167-74. PubMed ID: 25036500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GC-MS based metabolite profiling of rice Koji fermentation by various fungi.
    Kim AJ; Choi JN; Kim J; Park SB; Yeo SH; Choi JH; Lee CH
    Biosci Biotechnol Biochem; 2010; 74(11):2267-72. PubMed ID: 21071848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolomic study of the soybean pastes fermented by the single species Penicillium glabrum GQ1-3 and Aspergillus oryzae HGPA20.
    Sun X; Lyu G; Luan Y; Yang H; Zhao Z
    Food Chem; 2019 Oct; 295():622-629. PubMed ID: 31174804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple metabolite extraction method for metabolic profiling of the solid-state fermentation of Aspergillus oryzae.
    Tokuoka M; Sawamura N; Kobayashi K; Mizuno A
    J Biosci Bioeng; 2010 Dec; 110(6):665-9. PubMed ID: 20685162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parameters of the fermentation of soybean flour by Monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity.
    Handa CL; de Lima FS; Guelfi MFG; Fernandes MDS; Georgetti SR; Ida EI
    Food Chem; 2019 Jan; 271():274-283. PubMed ID: 30236677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging.
    Yan S; Huang W; Gao J; Fu H; Liu J
    Plant Physiol Biochem; 2018 Jun; 127():590-598. PubMed ID: 29729608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.
    Ito T; Konno M; Shimura Y; Watanabe S; Takahashi H; Hashizume K
    J Agric Food Chem; 2016 Jun; 64(22):4599-605. PubMed ID: 27181257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive profiling of semi-polar phytochemicals in whole wheat grains (Triticum aestivum) using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry.
    Tais L; Schulz H; Böttcher C
    Metabolomics; 2021 Jan; 17(2):18. PubMed ID: 33502591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of prolonged withering on phenolic compounds and antioxidant capability in white tea using LC-MS-based metabolomics and HPLC analysis: Comparison with green tea.
    Zhou B; Wang Z; Yin P; Ma B; Ma C; Xu C; Wang J; Wang Z; Yin D; Xia T
    Food Chem; 2022 Jan; 368():130855. PubMed ID: 34496334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of secondary metabolites induced by yellowing process for understanding rice yellowing mechanism.
    Liu Y; Liu J; Wang R; Sun H; Li M; Strappe P; Zhou Z
    Food Chem; 2021 Apr; 342():128204. PubMed ID: 33097330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of relationship between sake-making parameters and sake metabolites using a newly developed sake metabolome analysis method.
    Yazawa H; Tokuoka M; Kozato H; Mori Y; Umeo M; Toyoura R; Oda K; Fukuda H; Iwashita K
    J Biosci Bioeng; 2019 Aug; 128(2):183-190. PubMed ID: 30885682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Untargeted metabolite profiling and phytochemical analysis of Micromeria fruticosa L. (Lamiaceae) leaves.
    Abu-Reidah IM; Arráez-Román D; Al-Nuri M; Warad I; Segura-Carretero A
    Food Chem; 2019 May; 279():128-143. PubMed ID: 30611472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.