BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 3038121)

  • 21. [3H]Mianserin: differential labeling of serotonin and histamine receptors in rat brain.
    Peroutka SJ; Snyder SH
    J Pharmacol Exp Ther; 1981 Jan; 216(1):142-8. PubMed ID: 6109019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo determination of 5-hydroxytryptamine receptor-stimulated phosphoinositide turnover in rat brain.
    Hide I; Kato T; Yamawaki S
    J Neurochem; 1989 Aug; 53(2):556-60. PubMed ID: 2545822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors.
    Goodwin GM; Green AR
    Br J Pharmacol; 1985 Mar; 84(3):743-53. PubMed ID: 2580582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of bradykinin-induced phosphoinositide turnover in neurohybrid NCB-20 cells.
    Chuang DM; Dillon-Carter O
    J Neurochem; 1988 Aug; 51(2):505-13. PubMed ID: 2839620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity of serotonin (5-HT) receptor agonists, partial agonists and antagonists at cloned human 5-HT1A receptors that are negatively coupled to adenylate cyclase in permanently transfected HeLa cells.
    Pauwels PJ; Van Gompel P; Leysen JE
    Biochem Pharmacol; 1993 Jan; 45(2):375-83. PubMed ID: 8382063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. gamma-Aminobutyric acid inhibition of histamine-induced inositol phosphate formation in guinea-pig cerebellum: comparison with guinea-pig and rat cerebral cortex.
    Crawford ML; Carswell H; Young JM
    Br J Pharmacol; 1990 Aug; 100(4):867-73. PubMed ID: 2207505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterisation of the calcium responses to histamine in capsaicin-sensitive and capsaicin-insensitive sensory neurones.
    Nicolson TA; Bevan S; Richards CD
    Neuroscience; 2002; 110(2):329-38. PubMed ID: 11958874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphoinositide hydrolysis mediated by histamine H1-receptors in rat brain cortex.
    Claro E; Arbonés L; García A; Picatoste F
    Eur J Pharmacol; 1986 Apr; 123(2):187-96. PubMed ID: 3011460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of norepinephrine and 5-hydroxytryptamine on phosphoinositide-PO4 turnover in rabbit cornea.
    Akhtar RA
    Exp Eye Res; 1987 Jun; 44(6):849-62. PubMed ID: 2820770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 5-hydroxytryptamine (5-HT)1A receptors and the tail-flick response. I. 8-hydroxy-2-(di-n-propylamino) tetralin HBr-induced spontaneous tail-flicks in the rat as an in vivo model of 5-HT1A receptor-mediated activity.
    Millan MJ; Bervoets K; Colpaert FC
    J Pharmacol Exp Ther; 1991 Mar; 256(3):973-82. PubMed ID: 1826033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of 5-hydroxytryptamine3 receptor agonists on phosphoinositides hydrolysis in the rat fronto-cingulate and entorhinal cortices.
    Edwards E; Harkins K; Ashby CR; Wang RY
    J Pharmacol Exp Ther; 1991 Mar; 256(3):1025-32. PubMed ID: 1848625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective dopaminergic mechanism of dopamine and SKF38393 stimulation of inositol phosphate formation in rat brain.
    Undie AS; Friedman E
    Eur J Pharmacol; 1992 Aug; 226(4):297-302. PubMed ID: 1327844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pharmacological characterization of serotonin-stimulated phosphoinositide turnover in brain regions of the immature rat.
    Claustre Y; Rouquier L; Scatton B
    J Pharmacol Exp Ther; 1988 Mar; 244(3):1051-6. PubMed ID: 2855237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture.
    Dumuis A; Sebben M; Bockaert J
    Mol Pharmacol; 1988 Feb; 33(2):178-86. PubMed ID: 2828913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Receptor-linked hydrolysis of phosphoinositides and production of prostacyclin in cerebral endothelial cells.
    Xu J; Qu ZX; Moore SA; Hsu CY; Hogan EL
    J Neurochem; 1992 May; 58(5):1930-5. PubMed ID: 1313855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 5-Hydroxytryptamine responses in immature rat rostral ventrolateral medulla neurons in vitro.
    Hwang LL; Dun NJ
    J Neurophysiol; 1998 Sep; 80(3):1033-41. PubMed ID: 9744919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmacological characterization of regulation of phosphoinositide metabolism by recombinant 5-HT2 receptors of the rat.
    Apud JA; Grayson DR; De Erausquin E; Costa E
    Neuropharmacology; 1992 Jan; 31(1):1-8. PubMed ID: 1311807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selectivity of serotonergic drugs for multiple brain serotonin receptors. Role of [3H]-4-bromo-2,5-dimethoxyphenylisopropylamine ([3H]DOB), a 5-HT2 agonist radioligand.
    Titeler M; Lyon RA; Davis KH; Glennon RA
    Biochem Pharmacol; 1987 Oct; 36(19):3265-71. PubMed ID: 3663239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Serotonergic agonists stimulate inositol lipid metabolism in rabbit platelets.
    Schächter M; Godfrey PP; Minchin MC; McClue SJ; Young MM
    Life Sci; 1985 Oct; 37(17):1641-7. PubMed ID: 2997568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antidepressant-induced adaptive changes in the effects of 5-HT, 5-HT1A and 5-HT4 agonists on the population spike recorded in hippocampal CA1 cells do not involve presynaptic effects on excitatory synaptic transmission.
    Tokarski K; Bijak M
    Pol J Pharmacol; 1996; 48(6):565-73. PubMed ID: 9112695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.