BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 30381213)

  • 1. Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant.
    Artiga-Artigas M; Lanjari-Pérez Y; Martín-Belloso O
    Food Chem; 2018 Nov; 266():466-474. PubMed ID: 30381213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads.
    Hashim AF; Hamed SF; Abdel Hamid HA; Abd-Elsalam KA; Golonka I; Musiał W; El-Sherbiny IM
    Int J Biol Macromol; 2019 Nov; 140():682-696. PubMed ID: 31404604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes' role overcome penetration enhancement effect?
    Nikolic I; Mitsou E; Pantelic I; Randjelovic D; Markovic B; Papadimitriou V; Xenakis A; Lunter DJ; Zugic A; Savic S
    Eur J Pharm Sci; 2020 Jan; 142():105135. PubMed ID: 31682974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Curcumin Bioavailability through Nonionic Surfactant/Caseinate Mixed Nanoemulsions.
    Cuomo F; Perugini L; Marconi E; Messia MC; Lopez F
    J Food Sci; 2019 Sep; 84(9):2584-2591. PubMed ID: 31436860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.
    Uluata S; McClements DJ; Decker EA
    J Agric Food Chem; 2015 Oct; 63(42):9333-40. PubMed ID: 26452408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of soya lecithin and Tween 80 based novel vitamin D nanoemulsions prepared by ultrasonication using response surface methodology.
    Mehmood T; Ahmed A; Ahmed Z; Ahmad MS
    Food Chem; 2019 Aug; 289():664-670. PubMed ID: 30955662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.
    Xue J; Zhong Q
    J Agric Food Chem; 2014 Oct; 62(40):9900-7. PubMed ID: 25233801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microemulsions based on a sunflower lecithin-Tween 20 blend have high capacity for dissolving peppermint oil and stabilizing coenzyme Q10.
    Chen H; Guan Y; Zhong Q
    J Agric Food Chem; 2015 Jan; 63(3):983-9. PubMed ID: 25560905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-in-Oil-in-Water Nanoemulsions Containing Temulawak (
    Harimurti N; Nasikin M; Mulia K
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33401775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lecithin-based nanoemulsions on skin: Short-time cytotoxicity MTT and BrdU studies, skin penetration of surfactants and additives and the delivery of curcumin.
    Vater C; Hlawaty V; Werdenits P; Cichoń MA; Klang V; Elbe-Bürger A; Wirth M; Valenta C
    Int J Pharm; 2020 Apr; 580():119209. PubMed ID: 32165223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation and physiochemical study of α-tocopherol based oil in water nanoemulsion stabilized with non toxic, biodegradable surfactant: Sodium stearoyl lactate.
    Kaur K; Kaur J; Kumar R; Mehta SK
    Ultrason Sonochem; 2017 Sep; 38():570-578. PubMed ID: 27566966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.
    Chang Y; McClements DJ
    J Agric Food Chem; 2014 Mar; 62(10):2306-12. PubMed ID: 24564878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation and Optimization of Nanoemulsions Using the Natural Surfactant Saponin from
    Schreiner TB; Santamaria-Echart A; Ribeiro A; Peres AM; Dias MM; Pinho SP; Barreiro MF
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32230976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2010 Dec; 352(1):128-35. PubMed ID: 20817195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical, morphological and storage stability of clove oil nanoemulsion based delivery system.
    Singh P; Kaur G; Singh A
    Food Sci Technol Int; 2023 Mar; 29(2):156-167. PubMed ID: 34939458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-in-oil-in-water double emulsions loaded with chlorogenic acid: release mechanisms and oxidative stability.
    Dima C; Dima S
    J Microencapsul; 2018 Sep; 35(6):584-599. PubMed ID: 30557070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach to develop spray-dried encapsulated curcumin powder from oil-in-water emulsions stabilized by combined surfactants and chitosan.
    Hamad A; Suriyarak S; Devahastin S; Borompichaichartkul C
    J Food Sci; 2020 Nov; 85(11):3874-3884. PubMed ID: 33067839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of vitamin E-enriched nanoemulsions: influence of post-homogenization cosurfactant addition.
    Saberi AH; Fang Y; McClements DJ
    J Agric Food Chem; 2014 Feb; 62(7):1625-33. PubMed ID: 24460007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical and Antimicrobial Properties of Oleoresin Capsicum Nanoemulsions Formulated with Lecithin and Sucrose Monopalmitate.
    Akbas E; Soyler UB; Oztop MH
    Appl Biochem Biotechnol; 2019 May; 188(1):54-71. PubMed ID: 30311173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios.
    Ma P; Zeng Q; Tai K; He X; Yao Y; Hong X; Yuan F
    J Food Sci Technol; 2018 Sep; 55(9):3485-3497. PubMed ID: 30150807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.