These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 30381431)

  • 1. Latent Factors and Dynamics in Motor Cortex and Their Application to Brain-Machine Interfaces.
    Pandarinath C; Ames KC; Russo AA; Farshchian A; Miller LE; Dyer EL; Kao JC
    J Neurosci; 2018 Oct; 38(44):9390-9401. PubMed ID: 30381431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
    Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X
    J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning approach to characterize sequential movement-related states in premotor and motor cortices.
    DePass M; Falaki A; Quessy S; Dancause N; Cos I
    J Neurophysiol; 2022 May; 127(5):1348-1362. PubMed ID: 35171745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Parametric Representation to Dynamical System: Shifting Views of the Motor Cortex in Motor Control.
    Wang T; Chen Y; Cui H
    Neurosci Bull; 2022 Jul; 38(7):796-808. PubMed ID: 35298779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recasting brain-machine interface design from a physical control system perspective.
    Zhang Y; Chase SM
    J Comput Neurosci; 2015 Oct; 39(2):107-18. PubMed ID: 26142906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.
    Liao Y; Li H; Zhang Q; Fan G; Wang Y; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6513-6. PubMed ID: 25571488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces.
    O'Shea DJ; Trautmann E; Chandrasekaran C; Stavisky S; Kao JC; Sahani M; Ryu S; Deisseroth K; Shenoy KV
    Exp Neurol; 2017 Jan; 287(Pt 4):437-451. PubMed ID: 27511294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A muscle-activity-dependent gain between motor cortex and EMG.
    Naufel S; Glaser JI; Kording KP; Perreault EJ; Miller LE
    J Neurophysiol; 2019 Jan; 121(1):61-73. PubMed ID: 30379603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor decoding from the posterior parietal cortex using deep neural networks.
    Borra D; Filippini M; Ursino M; Fattori P; Magosso E
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37130514
    [No Abstract]   [Full Text] [Related]  

  • 10. Combining decoder design and neural adaptation in brain-machine interfaces.
    Shenoy KV; Carmena JM
    Neuron; 2014 Nov; 84(4):665-80. PubMed ID: 25459407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging ideas and tools to study the emergent properties of the cortical neural circuits for voluntary motor control in non-human primates.
    Kalaska JF
    F1000Res; 2019; 8():. PubMed ID: 31275561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanisms of movement planning: motor cortex and beyond.
    Svoboda K; Li N
    Curr Opin Neurobiol; 2018 Apr; 49():33-41. PubMed ID: 29172091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural dynamics and information representation in microcircuits of motor cortex.
    Tsubo Y; Isomura Y; Fukai T
    Front Neural Circuits; 2013; 7():85. PubMed ID: 23653596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in motor cortical representations of kinematic variables between action observation and action execution and implications for brain-machine interfaces.
    Willett FR; Suminski AJ; Fagg AH; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1334-7. PubMed ID: 25570214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control.
    Athalye VR; Ganguly K; Costa RM; Carmena JM
    Neuron; 2017 Feb; 93(4):955-970.e5. PubMed ID: 28190641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces.
    Kao JC; Nuyujukian P; Ryu SI; Churchland MM; Cunningham JP; Shenoy KV
    Nat Commun; 2015 Jul; 6():7759. PubMed ID: 26220660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timescales of Local and Cross-Area Interactions during Neuroprosthetic Learning.
    Derosier K; Veuthey TL; Ganguly K
    J Neurosci; 2021 Dec; 41(49):10120-10129. PubMed ID: 34732522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Algorithms and Circuits for Motor Planning.
    Inagaki HK; Chen S; Daie K; Finkelstein A; Fontolan L; Romani S; Svoboda K
    Annu Rev Neurosci; 2022 Jul; 45():249-271. PubMed ID: 35316610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of cortical neurons for identifying movement transitions in stand and squat.
    Ma X; Hu D; Huang J; Li W; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6051-4. PubMed ID: 24111119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.