These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30381453)

  • 1. Walking crowds on a shaky surface: stable walkers discover Millennium Bridge oscillations with and without pedestrian synchrony.
    Joshi V; Srinivasan M
    Biol Lett; 2018 Oct; 14(10):. PubMed ID: 30381453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walking on a moving surface: energy-optimal walking motions on a shaky bridge and a shaking treadmill can reduce energy costs below normal.
    Joshi V; Srinivasan M
    Proc Math Phys Eng Sci; 2015 Feb; 471(2174):20140662. PubMed ID: 25663810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling walker synchronization on the Millennium Bridge.
    Eckhardt B; Ott E; Strogatz SH; Abrams DM; McRobie A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021110. PubMed ID: 17358316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low dimensional description of pedestrian-induced oscillation of the Millennium Bridge.
    Abdulrehem MM; Ott E
    Chaos; 2009 Mar; 19(1):013129. PubMed ID: 19334993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous synchronization of motion in pedestrian crowds of different densities.
    Ma Y; Lee EWM; Shi M; Yuen RKK
    Nat Hum Behav; 2021 Apr; 5(4):447-457. PubMed ID: 33398140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical mechanics: crowd synchrony on the Millennium Bridge.
    Strogatz SH; Abrams DM; McRobie A; Eckhardt B; Ott E
    Nature; 2005 Nov; 438(7064):43-4. PubMed ID: 16267545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traffic instabilities in self-organized pedestrian crowds.
    Moussaïd M; Guillot EG; Moreau M; Fehrenbach J; Chabiron O; Lemercier S; Pettré J; Appert-Rolland C; Degond P; Theraulaz G
    PLoS Comput Biol; 2012; 8(3):e1002442. PubMed ID: 22457615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foot force models of crowd dynamics on a wobbly bridge.
    Belykh I; Jeter R; Belykh V
    Sci Adv; 2017 Nov; 3(11):e1701512. PubMed ID: 29296679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust spatial self-organization in crowds of asynchronous pedestrians.
    Tomaru T; Nishiyama Y; Feliciani C; Murakami H
    J R Soc Interface; 2024 May; 21(214):20240112. PubMed ID: 38807528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Evaluation of Pedestrian-Induced Multiaxial Gait Loads on Footbridges: Effects of the Structure-to-Human Interaction by Lateral Vibrating Platforms.
    Castillo B; Marulanda J; Thomson P
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics' insights into pedestrian motion and crowd dynamics: reply to comments on "The emergence of design in pedestrian dynamic: locomotion, self-organization, walking paths and constructal law".
    Miguel AF
    Phys Life Rev; 2013 Jun; 10(2):206-9. PubMed ID: 23726357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How frequent is the spontaneous occurrence of synchronized walking in daily life?
    Hajnal A; Durgin FH
    Exp Brain Res; 2023 Feb; 241(2):469-478. PubMed ID: 36576509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of pedestrians walking in line. II. Stepping behavior.
    Jelić A; Appert-Rolland C; Lemercier S; Pettré J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046111. PubMed ID: 23214656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordering leads to multiple fast tracks in simulated collective escape of human crowds.
    Cheng C; Li J; Yao Z
    Soft Matter; 2021 Jun; 17(22):5524-5531. PubMed ID: 33972975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking together: behavioural signatures of psychological crowds.
    Templeton A; Drury J; Philippides A
    R Soc Open Sci; 2018 Jul; 5(7):180172. PubMed ID: 30109073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traffic flow in a crowd of pedestrians walking at different speeds.
    Fujita A; Feliciani C; Yanagisawa D; Nishinari K
    Phys Rev E; 2019 Jun; 99(6-1):062307. PubMed ID: 31330706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of the London Millennium Bridge instability without synchronisation.
    Belykh I; Bocian M; Champneys AR; Daley K; Jeter R; Macdonald JHG; McRobie A
    Nat Commun; 2021 Dec; 12(1):7223. PubMed ID: 34893627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating pedestrian trajectories consistent with the fundamental diagram based on physiological and psychological factors.
    Narang S; Best A; Curtis S; Manocha D
    PLoS One; 2015; 10(4):e0117856. PubMed ID: 25875932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lévy walk process in self-organization of pedestrian crowds.
    Murakami H; Feliciani C; Nishinari K
    J R Soc Interface; 2019 Apr; 16(153):20180939. PubMed ID: 30966950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic group behaviour: Dependence of pedestrian dyad dynamics on principal social and personal features.
    Zanlungo F; Yücel Z; Brščić D; Kanda T; Hagita N
    PLoS One; 2017; 12(11):e0187253. PubMed ID: 29095913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.