BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30381657)

  • 1. Scale-Up Procedure for Primary Drying Process in Lyophilizer by Using the Vial Heat Transfer and the Drying Resistance.
    Kawasaki H; Shimanouchi T; Yamamoto M; Takahashi K; Kimura Y
    Chem Pharm Bull (Tokyo); 2018; 66(11):1048-1056. PubMed ID: 30381657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.
    Rambhatla S; Tchessalov S; Pikal MJ
    AAPS PharmSciTech; 2006 Apr; 7(2):E39. PubMed ID: 16796357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vial freeze-drying, part 1: new insights into heat transfer characteristics of tubing and molded vials.
    Hibler S; Wagner C; Gieseler H
    J Pharm Sci; 2012 Mar; 101(3):1189-201. PubMed ID: 22161688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A procedure to optimize scale-up for the primary drying phase of lyophilization.
    Kramer T; Kremer DM; Pikal MJ; Petre WJ; Shalaev EY; Gatlin LA
    J Pharm Sci; 2009 Jan; 98(1):307-18. PubMed ID: 18506820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the design of the stopper including dimension, type, and vent area on lyophilization process.
    Mungikar A; Ludzinski M; Kamat M
    PDA J Pharm Sci Technol; 2010; 64(6):507-16. PubMed ID: 21502061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.
    Sane P; Varma N; Ganguly A; Pikal M; Alexeenko A; Bogner RH
    AAPS PharmSciTech; 2017 Feb; 18(2):369-380. PubMed ID: 26989063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-Drying Process Development and Scale-Up: Scale-Up of Edge Vial Versus Center Vial Heat Transfer Coefficients, K
    Pikal MJ; Bogner R; Mudhivarthi V; Sharma P; Sane P
    J Pharm Sci; 2016 Nov; 105(11):3333-3343. PubMed ID: 27666376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of chamber wall temperature on energy transfer during freeze-drying.
    Ehlers S; Friess W; Schroeder R
    Int J Pharm; 2021 Jan; 592():120025. PubMed ID: 33137451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of vial heat transfer coefficients during the primary and secondary drying stages of freeze-drying.
    Yoon K; Narsimhan V
    Int J Pharm; 2023 Mar; 635():122746. PubMed ID: 36812952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Heat Transfer During the Secondary Drying Stage of Freeze Drying: Current Practice and Knowledge Gaps.
    Yoon K; Narsimhan V
    J Pharm Sci; 2022 Feb; 111(2):368-381. PubMed ID: 34571133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of the Tunable Diode Laser Absorption Spectroscopy: In-Process Estimation of Primary Drying Heterogeneity and Product Temperature During Lyophilization.
    Sharma P; Kessler WJ; Bogner R; Thakur M; Pikal MJ
    J Pharm Sci; 2019 Jan; 108(1):416-430. PubMed ID: 30114403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat and mass transfer scale-up issues during freeze-drying, I: atypical radiation and the edge vial effect.
    Rambhatla S; Pikal MJ
    AAPS PharmSciTech; 2003; 4(2):E14. PubMed ID: 12916896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying.
    Scutellà B; Passot S; Bourlés E; Fonseca F; Tréléa IC
    J Pharm Sci; 2017 Mar; 106(3):770-778. PubMed ID: 27939928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive models of lyophilization process for development, scale-up/tech transfer and manufacturing.
    Zhu T; Moussa EM; Witting M; Zhou D; Sinha K; Hirth M; Gastens M; Shang S; Nere N; Somashekar SC; Alexeenko A; Jameel F
    Eur J Pharm Biopharm; 2018 Jul; 128():363-378. PubMed ID: 29733948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization.
    Chen X; Sadineni V; Maity M; Quan Y; Enterline M; Mantri RV
    AAPS PharmSciTech; 2015 Dec; 16(6):1317-26. PubMed ID: 25791415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.