BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3038174)

  • 21. An electron nuclear double resonance investigation of redox-induced electronic structural change at CuA2+ in cytochrome c oxidase.
    Fan C; Bank JF; Dorr RG; Scholes CP
    J Biol Chem; 1988 Mar; 263(8):3588-91. PubMed ID: 2831193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The binding of carbon monoxide to cytochrome c oxidase.
    Wever R; Van Drooge JH; Muijsers AO; Bakker EP; Van Gelker BF
    Eur J Biochem; 1977 Feb; 73(1):149-54. PubMed ID: 190007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raman spectra of heme a, cytochrome oxidase-ligand complexes, and alkaline denatured oxidase.
    Salmeen I; Rimai L; Babcock G
    Biochemistry; 1978 Mar; 17(5):800-6. PubMed ID: 24463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the pH-dependent dimer-to-protomer transformation of cytochrome C oxidase at alkaline pH.
    Auer HE; Sun M; Greulick M
    Physiol Chem Phys; 1979; 11(1):9-22. PubMed ID: 41275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron spin relaxation of CuA and cytochrome a in cytochrome c oxidase. Comparison to heme, copper, and sulfur radical complexes.
    Brudvig GW; Blair DF; Chan SI
    J Biol Chem; 1984 Sep; 259(17):11001-9. PubMed ID: 6088526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the low-temperature intermediates of the reaction of fully reduced soluble cytochrome oxidase with oxygen by electron-paramagnetic-resonance and optical spectroscopy.
    Clore GM; Andréasson LE; Karlsson B; Aasa R; Malmström BG
    Biochem J; 1980 Jan; 185(1):139-54. PubMed ID: 6246874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH dependence of the tryptophan fluorescence in cytochrome c oxidase: further evidence for a redox-linked conformational change associated with CuA.
    Copeland RA; Smith PA; Chan SI
    Biochemistry; 1988 May; 27(10):3552-5. PubMed ID: 2841969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for two H2O2-binding sites in ferric cytochrome c oxidase. Indication to the O-cycle?
    Vygodina T; Konstantinov AA
    FEBS Lett; 1987 Jul; 219(2):387-92. PubMed ID: 3038610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resonance Raman spectroscopy of the integral quinol oxidase complex of Sulfolobus acidocaldarius.
    Gerscher S; Döpner S; Hildebrandt P; Gleissner M; Schäfer G
    Biochemistry; 1996 Oct; 35(39):12796-803. PubMed ID: 8841122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand-induced spectral changes in cytochrome c oxidase and their possible significance.
    Nicholls P; Petersen LC; Miller M; Hansen FB
    Biochim Biophys Acta; 1976 Nov; 449(2):188-96. PubMed ID: 186115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-resolved optical absorption studies of intramolecular electron transfer in cytochrome c oxidase.
    Georgiadis KE; Jhon NI; Einarsdóttir O
    Biochemistry; 1994 Aug; 33(31):9245-56. PubMed ID: 8049226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rate enhancement of the internal electron transfer in cytochrome c oxidase by the formation of a peroxide complex; its implication on the reaction mechanism of cytochrome c oxidase.
    Gorren AC; Dekker H; Vlegels L; Wever R
    Biochim Biophys Acta; 1988 Mar; 932(3):277-86. PubMed ID: 2831974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer.
    Brzezinski P; Malmström BG
    Biochim Biophys Acta; 1987 Oct; 894(1):29-38. PubMed ID: 2444256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance Raman evidence for low-spin Fe2+ heme a3 in energized cytochrome c oxidase: implications for the inhibition of O2 reduction.
    Ray GB; Copeland RA; Lee CP; Spiro TG
    Biochemistry; 1990 Apr; 29(13):3208-13. PubMed ID: 2159329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reaction of formate with the fast form of cytochrome oxidase: a model for the fast to slow conversion.
    Schoonover JR; Palmer G
    Biochemistry; 1991 Jul; 30(30):7541-50. PubMed ID: 1649633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligation, inhibition, and activation of cytochrome c oxidase by fatty acids.
    Sharpe M; Perin I; Tattrie B; Nicholls P
    Biochem Cell Biol; 1997; 75(1):71-9. PubMed ID: 9192076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conversion of CuA to a type II copper in cytochrome c oxidase.
    Nilsson T; Copeland RA; Smith PA; Chan SI
    Biochemistry; 1988 Oct; 27(21):8254-60. PubMed ID: 2852958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A carbon monoxide irreducible form of cytochrome c oxidase and other unusual properties of the "monomeric" shark enzyme.
    Holm DE; Godette G; Bonaventura C; Bonaventura J; Boatright MD; Pearce LL; Peterson J
    Comp Biochem Physiol B Biochem Mol Biol; 1996 Aug; 114(4):345-52. PubMed ID: 8840511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactions of mercaptans with cytochrome c oxidase and cytochrome c.
    Wilms J; Lub J; Wever R
    Biochim Biophys Acta; 1980 Feb; 589(2):324-35. PubMed ID: 6243968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An EPR study of the photodissociation reactions of oxidised cytochrome c oxidase-nitric oxide complexes.
    Boelens R; Wever R; Van Gelder BF; Rademaker H
    Biochim Biophys Acta; 1983 Aug; 724(2):176-83. PubMed ID: 6309220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.