These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30381820)

  • 1. FracKfinder: A MATLAB Toolbox for Computing Three-Dimensional Hydraulic Conductivity Tensors for Fractured Porous Media.
    Young NL; Reber JE; Simpkins WW
    Ground Water; 2019 Jan; 57(1):75-80. PubMed ID: 30381820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical and experimental analysis of solute transport in heterogeneous porous media.
    Wu L; Gao B; Tian Y; Muñoz-Carpena R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):338-43. PubMed ID: 24279625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of groundwater velocity in discrete rock fractures.
    Novakowski K; Bickerton G; Lapcevic P; Voralek J; Ross N
    J Contam Hydrol; 2006 Jan; 82(1-2):44-60. PubMed ID: 16239047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving estimates of groundwater velocity in a fractured rock borehole using hydraulic and tracer dilution methods.
    Maldaner CH; Quinn PM; Cherry JA; Parker BL
    J Contam Hydrol; 2018 Jul; 214():75-86. PubMed ID: 29907430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport.
    Medici G; West LJ; Banwart SA
    J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of Modeling Approaches to Groundwater Flow in Deformed Carbonate Aquifers.
    Medici G; Smeraglia L; Torabi A; Botter C
    Ground Water; 2021 May; 59(3):334-351. PubMed ID: 33368217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appropriate Domain Size for Groundwater Flow Modeling with a Discrete Fracture Network Model.
    Ji SH; Koh YK
    Ground Water; 2017 Jan; 55(1):51-62. PubMed ID: 27305316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Visible Fractures Accurate Predictors of Flow and Mass Transport in Fractured Till?
    Young NL; Simpkins WW; Horton R
    Ground Water; 2021 Jan; 59(1):24-30. PubMed ID: 32388859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of 3D Spatially Variable Anisotropy for Groundwater Flow Simulations.
    Borghi A; Renard P; Courrioux G
    Ground Water; 2015; 53(6):955-8. PubMed ID: 25648610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix diffusion-derived plume attenuation in fractured bedrock.
    Lipson DS; Kueper BH; Gefell MJ
    Ground Water; 2005; 43(1):30-9. PubMed ID: 15726922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydraulic Tomography: 3D Hydraulic Conductivity, Fracture Network, and Connectivity in Mudstone.
    Tiedeman CR; Barrash W
    Ground Water; 2020 Mar; 58(2):238-257. PubMed ID: 31187873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Method to Represent a Well in a Three-Dimensional Discrete Fracture Network Model.
    Pham H; Parashar R; Sund N; Pohlmann K
    Ground Water; 2021 Mar; 59(2):281-286. PubMed ID: 32629530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specification of matrix cleanup goals in fractured porous media.
    Rodríguez DJ; Kueper BH
    Ground Water; 2013; 51(1):58-65. PubMed ID: 22372684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of a network-scale tracer experiment in fractured rock conducted using open wells.
    Howroyd M; Novakowski KS
    J Contam Hydrol; 2021 Dec; 243():103907. PubMed ID: 34736081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system.
    Cho MS; Zhao Z; Thomson NR; Illman WA
    J Contam Hydrol; 2020 Feb; 229():103559. PubMed ID: 31784037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of DNAPL emissions and remediation in a fractured dolomitic aquifer.
    McLaren RG; Sudicky EA; Park YJ; Illman WA
    J Contam Hydrol; 2012 Aug; 136-137():56-71. PubMed ID: 22684142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Open, Object-Based Framework for Generating Anisotropy in Sedimentary Subsurface Models.
    Bennett JP; Haslauer CP; Ross M; Cirpka OA
    Ground Water; 2019 May; 57(3):420-429. PubMed ID: 29862499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of a microbial growth experiment with bioclogging in a two-dimensional saturated porous media flow field.
    Thullner M; Schroth MH; Zeyer J; Kinzelbach W
    J Contam Hydrol; 2004 May; 70(1-2):37-62. PubMed ID: 15068868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifications to the Conduit Flow Process Mode 2 for MODFLOW-2005.
    Reimann T; Birk S; Rehrl C; Shoemaker WB
    Ground Water; 2012; 50(1):144-8. PubMed ID: 21371024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.