BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 3038186)

  • 1. An antimycin-insensitive succinate-cytochrome c reductase activity in pure reconstitutively active succinate dehydrogenase.
    Yu L; McCurley JP; Yu CA
    Biochim Biophys Acta; 1987 Aug; 893(1):75-82. PubMed ID: 3038186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the succinate dehydrogenating system. Isolation and properties of the mitochondrial succinate-ubiquinone reductase.
    Tushurashvili PR; Gavrikova EV; Ledenev AN; Vinogradov AD
    Biochim Biophys Acta; 1985 Sep; 809(2):145-59. PubMed ID: 2994719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of bovine heart mitochondrial cytochrome b560.
    Yu L; Xu JX; Haley PE; Yu CA
    J Biol Chem; 1987 Jan; 262(3):1137-43. PubMed ID: 3027080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution and reconstitution of succinate-cytochrome c reductase: preparations and properties of high purity succinate dehydrogenase and ubiquinol-cytochrome c reductase.
    Yu CA; Yu L
    Biochim Biophys Acta; 1980 Jul; 591(2):409-20. PubMed ID: 6249348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and EPR characteristics of two ferredoxin-type iron-sulfur centers in the succinate-ubiquinone reductase segment of the respiratory chain.
    Ohnishi T; Salerno JC
    J Biol Chem; 1976 Apr; 251(7):2094-104. PubMed ID: 178655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of ubisemiquinone radicals in succinate-ubiquinone reductase.
    Miki T; Yu L; Yu CA
    Arch Biochem Biophys; 1992 Feb; 293(1):61-6. PubMed ID: 1309986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution and reconstitution of succinate-ubiquinone reductase from Escherichia coli.
    Yang X; Yu L; Yu CA
    J Biol Chem; 1997 Apr; 272(15):9683-9. PubMed ID: 9092498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria.
    Zhang L; Yu L; Yu CA
    J Biol Chem; 1998 Dec; 273(51):33972-6. PubMed ID: 9852050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium(V) is produced upon reduction of chromate by mitochondrial electron transport chain complexes.
    Rossi SC; Wetterhahn KE
    Carcinogenesis; 1989 May; 10(5):913-20. PubMed ID: 2539917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 2001 Jun; 276(22):19006-11. PubMed ID: 11262412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid.
    Forman HJ; Kennedy J
    J Biol Chem; 1975 Jun; 250(11):4322-6. PubMed ID: 165196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of a carboxyl group in the interaction between succinate dehydrogenase and its membrane-anchoring protein (QPs) fraction.
    Xu JX; Yu L; Yu CA
    Biochemistry; 1987 Dec; 26(24):7674-9. PubMed ID: 3427098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae.
    Beattie DS; Clejan L
    Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interaction of ubisemiquinone with succinate dehydrogenase and the cytochrome chain of mitochondria].
    Grigolava IV; Konstantinov AA; Ksenzenko MIu; Ruuge EK; Tikhonov AN
    Biokhimiia; 1982 Dec; 47(12):1970-82. PubMed ID: 6297622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Gwak SH; Yu L; Yu CA
    Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of cytochrome b oxidation in antimycin-treated submitochondrial particles.
    Hatefi Y; Yagi T
    Biochemistry; 1982 Dec; 21(25):6614-8. PubMed ID: 7150580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.