These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 3038204)

  • 21. Time resolved spectroscopy of tryptophyl fluorescence of yeast 3-phosphoglycerate kinase.
    Privat JP; Wahl P; Auchet JC; Pain RH
    Biophys Chem; 1980 Apr; 11(2):239-48. PubMed ID: 6989411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Modeling of the structure of a complex of ribonuclease from Bacillus intermedius 7P with guanosine-3'-phosphate].
    Pavlovskiĭ AG; Sanishvili RG
    Dokl Akad Nauk SSSR; 1988; 301(5):1254-7. PubMed ID: 3147884
    [No Abstract]   [Full Text] [Related]  

  • 23. Quenching by acrylamide and temperature of a fluorescent probe attached to the active site of ribonuclease.
    Jullien M; Garel JR; Merola F; Brochon JC
    Eur Biophys J; 1986; 13(3):131-7. PubMed ID: 3956444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous "unquenching" of the fluorescence decay times of beta-lactoglobulin induced by the known quencher acrylamide.
    Portugal CA; Crespo JG; Lima JC
    J Photochem Photobiol B; 2006 Feb; 82(2):117-26. PubMed ID: 16288883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystallization of a complex between ribonuclease T1 and 2'-guanylic acid.
    Heinemann U; Wernitz M; Pähler A; Saenger W; Menke G; Rüterjans H
    Eur J Biochem; 1980 Aug; 109(1):109-14. PubMed ID: 6250834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of 8-bromoguanylic acid to ribonuclease T1 as studied by absorption and circular dichroism spectroscopy.
    Yoshida H; Kanae H
    Biochem Biophys Res Commun; 1983 Jul; 114(1):88-92. PubMed ID: 6309175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunosuppressor binding to the immunophilin FKBP59 affects the local structural dynamics of a surface beta-strand: time-resolved fluorescence study.
    Rouviere N; Vincent M; Craescu CT; Gallay J
    Biochemistry; 1997 Jun; 36(24):7339-52. PubMed ID: 9200682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viscosity dependence of the solute quenching of the tryptophanyl fluorescence of proteins.
    Eftink MR; Hagaman KA
    Biophys Chem; 1986 Dec; 25(3):277-82. PubMed ID: 3103704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional structure of ribonuclease Ms*3'-guanylic acid complex at 2.5 A resolution.
    Nonaka T; Mitsui Y; Irie M; Nakamura KT
    FEBS Lett; 1991 Jun; 283(2):207-9. PubMed ID: 1646118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1H-NMR investigation of the interaction between RNase T1 and a novel substrate analog, 2'-deoxy-2'-fluoroguanylyl-(3'-5')uridine.
    Shibata Y; Shimada I; Ikehara M; Miyazawa T; Inagaki F
    FEBS Lett; 1988 Aug; 235(1-2):237-40. PubMed ID: 2841155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorescence and optically detected magnetic resonance measurements of the 2'AMP and 2'GMP complexes of a mutant ribonuclease T1 (Y45W) in solution: correlation with X-ray crystal structures.
    Lam WC; Maki AH; Itoh T; Hakoshima T
    Biochemistry; 1992 Jul; 31(29):6756-60. PubMed ID: 1322171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein dynamics. A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1.
    MacKerell AD; Rigler R; Nilsson L; Hahn U; Saenger W
    Biophys Chem; 1987 May; 26(2-3):247-61. PubMed ID: 3111558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence quenching as an indicator for the exposure of tryptophyl residues in Streptomyces subtilisin inhibitor.
    Komiyama T; Miwa M
    J Biochem; 1980 Apr; 87(4):1029-36. PubMed ID: 6993454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1.
    Pace CN; Barrett AJ
    Biochem J; 1984 Apr; 219(2):411-7. PubMed ID: 6430267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quenching of tryptophanyl fluorescence of bovine adrenal P-450C-21 and inhibition of substrate binding by acrylamide.
    Narasimhulu S
    Biochemistry; 1988 Feb; 27(4):1147-53. PubMed ID: 3259146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure and function of ribonuclease T1. XX. Specific inactivation of ribonuclease T1 by reaction with tosylglycolate.
    Oshima H; Takahashi K
    J Biochem; 1976 Dec; 80(6):1259-65. PubMed ID: 14119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of the time-resolved tryptophan fluorescence of crystalline alpha-chymotrypsin.
    Desie G; Boens N; De Schryver FC
    Biochemistry; 1986 Dec; 25(25):8301-8. PubMed ID: 3814586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of a protein matrix revealed by fluorescence quenching.
    Eftink MR; Ghiron CA
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3290-4. PubMed ID: 810800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.