These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 3038204)

  • 41. Mapping the suramin-binding sites of human neutrophil elastase: investigation by fluorescence resonance energy transfer and molecular modeling.
    Mély Y; Cadène M; Sylte I; Bieth JG
    Biochemistry; 1997 Dec; 36(50):15624-31. PubMed ID: 9398290
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the tryptophan fluorescence and hydrodynamic properties of rat DNA polymerase beta.
    Kim SJ; Lewis MS; Knutson JR; Porter DK; Kumar A; Wilson SH
    J Mol Biol; 1994 Nov; 244(2):224-35. PubMed ID: 7966332
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorescence quenching of buried Trp residues by acrylamide does not require penetration of the protein fold.
    Strambini GB; Gonnelli M
    J Phys Chem B; 2010 Jan; 114(2):1089-93. PubMed ID: 19924836
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupling between external viscosity and the intramolecular dynamics of ribonuclease T1: a two-phase model for the quenching of protein fluorescence.
    Somogyi B; Punyiczki M; Hedstrom J; Norman JA; Prendergast FG; Rosenberg A
    Biochim Biophys Acta; 1994 Nov; 1209(1):61-8. PubMed ID: 7947983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NMR studies on interactions of ribonuclease Sa with Guo-3'-P.
    Both V; Zachar J; Zelinka J
    Gen Physiol Biophys; 1983 Aug; 2(4):269-78. PubMed ID: 6432629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Local conformation of rabbit skeletal myosin rod filaments probed by intrinsic tryptophan fluorescence.
    Chang YC; Ludescher RD
    Biochemistry; 1994 Mar; 33(8):2313-21. PubMed ID: 8117688
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ligand-dependent conformational equilibria of serum albumin revealed by tryptophan fluorescence quenching.
    Chadborn N; Bryant J; Bain AJ; O'Shea P
    Biophys J; 1999 Apr; 76(4):2198-207. PubMed ID: 10096914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescence lifetime and anisotropy studies with liver alcohol dehydrogenase and its complexes.
    Eftink MR; Hagaman KA
    Biochemistry; 1986 Oct; 25(21):6631-7. PubMed ID: 3790548
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.
    Nanjo D; Hosoi H; Fujino T; Tahara T; Korenaga T
    J Phys Chem B; 2007 Mar; 111(11):2759-64. PubMed ID: 17388434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resolution and characterization of tryptophyl fluorescence of hen egg-white lysozyme by quenching- and time-resolved spectroscopy.
    Nishimoto E; Yamashita S; Yamasaki N; Imoto T
    Biosci Biotechnol Biochem; 1999 Feb; 63(2):329-36. PubMed ID: 10192915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Allosteric transition of aspartokinase I-homoserine dehydrogenase I studied by time-resolved fluorescence.
    Jullien M; Baudet S; Rodier F; Le Bras G
    Biochimie; 1988 Dec; 70(12):1807-14. PubMed ID: 3150686
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ribose recognition by ribonuclease T1: difference spectral binding studies with guanosine and deoxyguanosine.
    Walz FG
    Biochemistry; 1976 Oct; 15(20):4446-50. PubMed ID: 9971
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alteration of tryptophan fluorescence properties upon dissociation of Lumbricus terrestris hemoglobin.
    Hirsch RE; Vidugiris GJ; Friedman JM; Harrington JP
    Biochim Biophys Acta; 1994 Apr; 1205(2):248-51. PubMed ID: 8155704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of the single tryptophan residue in the structure and function of ribonuclease T1.
    Fukunaga Y; Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1982 Jul; 92(1):143-53. PubMed ID: 6811571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of substrate binding to the adrenal cytochrome P450C-21 by acrylamide and its implications for solvent accessibility of the binding site in the microsomes.
    Narasimhulu S
    Biochemistry; 1991 Sep; 30(38):9319-27. PubMed ID: 1892836
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the involvement of electron transfer reactions in the fluorescence decay kinetics heterogeneity of proteins.
    Ababou A; Bombarda E
    Protein Sci; 2001 Oct; 10(10):2102-13. PubMed ID: 11567101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligoinosinic acids and poly I.
    Watanabe H; Ando E; Ohgi K; Irie M
    J Biochem; 1985 Nov; 98(5):1239-45. PubMed ID: 3936847
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence studies with potato carboxypeptidase inhibitor.
    Ghiron CA; Eftink MR; Longworth J; Ryan C
    Biochim Biophys Acta; 1990 Dec; 1041(3):311-6. PubMed ID: 2268677
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acrylamide quenching of the fluorescence of glyceraldehyde-3-phosphate dehydrogenase: reversible and irreversible effects.
    Bastyns K; Engelborghs Y
    Photochem Photobiol; 1992 Jan; 55(1):9-16. PubMed ID: 1603853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermodynamic analysis of the equilibrium, association and dissociation of 2'GMP and 3'GMP with ribonuclease T1 at pH 5.3.
    MacKerell AD; Rigler R; Hahn U; Saenger W
    Biochim Biophys Acta; 1991 Mar; 1073(2):357-65. PubMed ID: 1849008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.