These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30382051)

  • 21. The anticancer immune response of anti-PD-1/PD-L1 and the genetic determinants of response to anti-PD-1/PD-L1 antibodies in cancer patients.
    Sui X; Ma J; Han W; Wang X; Fang Y; Li D; Pan H; Zhang L
    Oncotarget; 2015 Aug; 6(23):19393-404. PubMed ID: 26305724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Roles of microRNAs in Regulating the Expression of PD-1/PD-L1 Immune Checkpoint.
    Wang Q; Lin W; Tang X; Li S; Guo L; Lin Y; Kwok HF
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy.
    Lee S; Son B; Park G; Kim H; Kang H; Jeon J; Youn H; Youn B
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30227629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Dendritic cell and cancer immune checkpoint].
    Kubo T; Hirohashi Y; Torigoe T
    Nihon Rinsho Meneki Gakkai Kaishi; 2016; 39(5):468-472. PubMed ID: 27795504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system.
    Pico de Coaña Y; Choudhury A; Kiessling R
    Trends Mol Med; 2015 Aug; 21(8):482-91. PubMed ID: 26091825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Checkpoint blocking antibodies in cancer immunotherapy.
    Kyi C; Postow MA
    FEBS Lett; 2014 Jan; 588(2):368-76. PubMed ID: 24161671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy.
    Dolan DE; Gupta S
    Cancer Control; 2014 Jul; 21(3):231-7. PubMed ID: 24955707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intratumoral injection of IFN-β induces chemokine production in melanoma and augments the therapeutic efficacy of anti-PD-L1 mAb.
    Uehara J; Ohkuri T; Kosaka A; Ishibashi K; Hirata Y; Ohara K; Nagato T; Oikawa K; Aoki N; Harabuchi Y; Ishida-Yamamoto A; Kobayashi H
    Biochem Biophys Res Commun; 2017 Aug; 490(2):521-527. PubMed ID: 28624449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immuno-pharmacodynamics for evaluating mechanism of action and developing immunotherapy combinations.
    Parchment RE; Voth AR; Doroshow JH; Berzofsky JA
    Semin Oncol; 2016 Aug; 43(4):501-13. PubMed ID: 27663482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: The future is now.
    Bellmunt J; Powles T; Vogelzang NJ
    Cancer Treat Rev; 2017 Mar; 54():58-67. PubMed ID: 28214651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Treatment of HIV/AIDS associated cancers with immunotherapy targeting PD-1/PD-L1 instead of chemotherapy.
    Kasi PM; Block MS; Ansell SM
    Med Hypotheses; 2016 Jan; 86():129-31. PubMed ID: 26559886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entinostat Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Lung and Renal Cell Carcinoma.
    Orillion A; Hashimoto A; Damayanti N; Shen L; Adelaiye-Ogala R; Arisa S; Chintala S; Ordentlich P; Kao C; Elzey B; Gabrilovich D; Pili R
    Clin Cancer Res; 2017 Sep; 23(17):5187-5201. PubMed ID: 28698201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent developments and future challenges in immune checkpoint inhibitory cancer treatment.
    Koster BD; de Gruijl TD; van den Eertwegh AJ
    Curr Opin Oncol; 2015 Nov; 27(6):482-8. PubMed ID: 26352539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer: Current controversies and future directions.
    Soo RA; Lim SM; Syn NL; Teng R; Soong R; Mok TSK; Cho BC
    Lung Cancer; 2018 Jan; 115():12-20. PubMed ID: 29290252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immune-Checkpoint Inhibitors in the Era of Precision Medicine: What Radiologists Should Know.
    Braschi-Amirfarzan M; Tirumani SH; Hodi FS; Nishino M
    Korean J Radiol; 2017; 18(1):42-53. PubMed ID: 28096717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy.
    Hamid O; Carvajal RD
    Expert Opin Biol Ther; 2013 Jun; 13(6):847-61. PubMed ID: 23421934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of programmed cell death-1 (PD-1) and its ligands in pediatric cancer.
    van Dam LS; de Zwart VM; Meyer-Wentrup FA
    Pediatr Blood Cancer; 2015 Feb; 62(2):190-197. PubMed ID: 25327979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical applications of PD-L1 bioassays for cancer immunotherapy.
    Liu D; Wang S; Bindeman W
    J Hematol Oncol; 2017 May; 10(1):110. PubMed ID: 28514966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting T Cell Co-receptors for Cancer Therapy.
    Callahan MK; Postow MA; Wolchok JD
    Immunity; 2016 May; 44(5):1069-78. PubMed ID: 27192570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orchestrating immune check-point blockade for cancer immunotherapy in combinations.
    Perez-Gracia JL; Labiano S; Rodriguez-Ruiz ME; Sanmamed MF; Melero I
    Curr Opin Immunol; 2014 Apr; 27():89-97. PubMed ID: 24485523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.