These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30382219)

  • 1. Single-cell sequencing paints diverse pictures of the brain.
    Bhaduri A; Nowakowski TJ
    Nature; 2018 Nov; 563(7729):38-39. PubMed ID: 30382219
    [No Abstract]   [Full Text] [Related]  

  • 2. Single-cell transcriptomics as a framework and roadmap for understanding the brain.
    Cembrowski MS
    J Neurosci Methods; 2019 Oct; 326():108353. PubMed ID: 31351971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stability of the transcriptome during the estrous cycle in four regions of the mouse brain.
    DiCarlo LM; Vied C; Nowakowski RS
    J Comp Neurol; 2017 Oct; 525(15):3360-3387. PubMed ID: 28685836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Complexity of Cortical Development Using Single-Cell Transcriptomics.
    Jeong H; Tiwari VK
    Front Neurosci; 2018; 12():31. PubMed ID: 29456488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole Transcriptome Screening Reveals Myelination Deficits in Dysplastic Human Temporal Neocortex.
    Donkels C; Pfeifer D; Janz P; Huber S; Nakagawa J; Prinz M; Schulze-Bonhage A; Weyerbrock A; Zentner J; Haas CA
    Cereb Cortex; 2017 Feb; 27(2):1558-1572. PubMed ID: 26796214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reviving the Transcriptome Studies: An Insight Into the Emergence of Single-Molecule Transcriptome Sequencing.
    Wang B; Kumar V; Olson A; Ware D
    Front Genet; 2019; 10():384. PubMed ID: 31105749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Cell mRNA Sequencing of the Mouse Brain Vasculature.
    Vanlandewijck M; Betsholtz C
    Methods Mol Biol; 2018; 1846():309-324. PubMed ID: 30242769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell analysis of long non-coding RNAs in the developing human neocortex.
    Liu SJ; Nowakowski TJ; Pollen AA; Lui JH; Horlbeck MA; Attenello FJ; He D; Weissman JS; Kriegstein AR; Diaz AA; Lim DA
    Genome Biol; 2016 Apr; 17():67. PubMed ID: 27081004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomics and single-cell RNA-sequencing.
    Chambers DC; Carew AM; Lukowski SW; Powell JE
    Respirology; 2019 Jan; 24(1):29-36. PubMed ID: 30264869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of available methods for diverse RNA-Seq data analyses.
    Chen G; Wang C; Shi T
    Sci China Life Sci; 2011 Dec; 54(12):1121-8. PubMed ID: 22227904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics.
    Spaethling JM; Na YJ; Lee J; Ulyanova AV; Baltuch GH; Bell TJ; Brem S; Chen HI; Dueck H; Fisher SA; Garcia MP; Khaladkar M; Kung DK; Lucas TH; O'Rourke DM; Stefanik D; Wang J; Wolf JA; Bartfai T; Grady MS; Sul JY; Kim J; Eberwine JH
    Cell Rep; 2017 Jan; 18(3):791-803. PubMed ID: 28099855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroscience: Sex Hormones at Work in the Neocortex.
    Delevich K; Piekarski D; Wilbrecht L
    Curr Biol; 2019 Feb; 29(4):R122-R125. PubMed ID: 30779899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.
    Dueck H; Khaladkar M; Kim TK; Spaethling JM; Francis C; Suresh S; Fisher SA; Seale P; Beck SG; Bartfai T; Kuhn B; Eberwine J; Kim J
    Genome Biol; 2015 Jun; 16(1):122. PubMed ID: 26056000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex.
    Florio M; Heide M; Pinson A; Brandl H; Albert M; Winkler S; Wimberger P; Huttner WB; Hiller M
    Elife; 2018 Mar; 7():. PubMed ID: 29561261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex.
    Telley L; Govindan S; Prados J; Stevant I; Nef S; Dermitzakis E; Dayer A; Jabaudon D
    Science; 2016 Mar; 351(6280):1443-6. PubMed ID: 26940868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperation of Genomic, Transcriptomics and Proteomic Methods in the Detection of Mutated Proteins.
    Zavadil Kokáš F; Faktor J; Vojtěšek B
    Klin Onkol; 2019; 32(Supplementum 3):78-84. PubMed ID: 31627710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single cell transcriptomics in neuroscience: cell classification and beyond.
    Tasic B
    Curr Opin Neurobiol; 2018 Jun; 50():242-249. PubMed ID: 29738987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Alzheimer Disease at the Interface between Genetics and Transcriptomics.
    Verheijen J; Sleegers K
    Trends Genet; 2018 Jun; 34(6):434-447. PubMed ID: 29573818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion.
    Florio M; Albert M; Taverna E; Namba T; Brandl H; Lewitus E; Haffner C; Sykes A; Wong FK; Peters J; Guhr E; Klemroth S; Prüfer K; Kelso J; Naumann R; Nüsslein I; Dahl A; Lachmann R; Pääbo S; Huttner WB
    Science; 2015 Mar; 347(6229):1465-70. PubMed ID: 25721503
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.