These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30382266)

  • 41. Theoretical revisit of regioselectivities of diels-alder reactions: orbital-based reevaluation of multicentered reactivity in terms of reactive hybrid orbitals.
    Hirao H; Ohwada T
    J Phys Chem A; 2005 Feb; 109(5):816-24. PubMed ID: 16838952
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hetero-Diels-Alder Reactions of Quinone Methides: The Origin of the α-Regioselectivity of 3-Methylene-1,2,4-naphthotriones.
    Delarmelina M; Ferreira SB; da Silva FC; Ferreira VF; Carneiro JWM
    J Org Chem; 2020 Jun; 85(11):7001-7013. PubMed ID: 32369362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deeper Insight into the Factors Controlling H
    Yepes D; Jaque P; Fernández I
    Chemistry; 2016 Dec; 22(52):18801-18809. PubMed ID: 27859795
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regioselectivity of Sc2C2@C3v(8)-C82: Role of the Sumanene-Type Hexagon in Diels-Alder Reaction.
    Zhao P; Zhao X; Ehara M
    J Org Chem; 2016 Sep; 81(18):8169-74. PubMed ID: 27538115
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rationalizing the Substituent Effects in Diels-Alder Reactions of Triazolinediones with Anthracene.
    Hernández-Mancera JP; Rojas-Valencia N; Núñez-Zarur F
    J Phys Chem A; 2022 Sep; 126(38):6657-6667. PubMed ID: 36122186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Origin of asynchronicity in Diels-Alder reactions.
    Vermeeren P; Hamlin TA; Bickelhaupt FM
    Phys Chem Chem Phys; 2021 Sep; 23(36):20095-20106. PubMed ID: 34499069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Azafullerenes encapsulated within single-walled carbon nanotubes.
    Pagona G; Rotas G; Khlobystov AN; Chamberlain TW; Porfyrakis K; Tagmatarchis N
    J Am Chem Soc; 2008 May; 130(19):6062-3. PubMed ID: 18426209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of encapsulated metal cation in the reactivity and regioselectivity of the C₆₀ Diels-Alder reaction.
    Cui CX; Liu YJ
    J Phys Chem A; 2015 Mar; 119(12):3098-106. PubMed ID: 25714730
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of Orbital Interactions and Activation Strain (Distortion Energies) on Reactivities in the Normal and Inverse Electron-Demand Cycloadditions of Strained and Unstrained Cycloalkenes.
    Levandowski BJ; Hamlin TA; Bickelhaupt FM; Houk KN
    J Org Chem; 2017 Aug; 82(16):8668-8675. PubMed ID: 28712288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Charge transfer and first hyperpolarizability: cage-like radicals C59X and lithium encapsulated Li@C59X (X=B, N).
    Gao FW; Zhong RL; Sun SL; Xu HL; Zhao L; Su ZM
    J Mol Model; 2015 Oct; 21(10):258. PubMed ID: 26369918
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational studies on [4 + 2] / [3 + 2] tandem sequential cycloaddition reactions of functionalized acetylenes with cyclopentadiene and diazoalkane for the formation of norbornene pyrazolines.
    Opoku E; Tia R; Adei E
    J Mol Model; 2019 May; 25(6):168. PubMed ID: 31119394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reactivity and regioselectivity in reactions of methyl and ethyl azides with cyclooctynes: activation strain model and energy decomposition analysis.
    de S Vilhena F; de M Carneiro JW
    J Mol Model; 2017 Jan; 23(1):14. PubMed ID: 28032223
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of encapsulation of Na+ and F- ions on the Diels-Alder reactivity of C32.
    Ravinder P; Subramanian V
    J Phys Chem A; 2012 Jun; 116(25):6870-8. PubMed ID: 22624975
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model.
    Fernández I; Bickelhaupt FM
    Chem Asian J; 2016 Dec; 11(23):3297-3304. PubMed ID: 27863108
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A theoretical investigation into the 1,3-dipolar cycloaddition of azidotrimethylsilane onto nanographene.
    Yuan Y; Chen P; Ren X; Wang H
    Chemphyschem; 2012 Feb; 13(3):741-50. PubMed ID: 22307835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis and Properties of Endohedral Aza[60]fullerenes: H₂O@C₅₉N and H₂@C₅₉N as Their Dimers and Monomers.
    Hashikawa Y; Murata M; Wakamiya A; Murata Y
    J Am Chem Soc; 2016 Mar; 138(12):4096-104. PubMed ID: 26990083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Frozen Cage Model: A Computationally Low-Cost Tool for Predicting the Exohedral Regioselectivity of Cycloaddition Reactions Involving Endohedral Metallofullerenes.
    Garcia-Borràs M; Romero-Rivera A; Osuna S; Luis JM; Swart M; Solà M
    J Chem Theory Comput; 2012 May; 8(5):1671-83. PubMed ID: 26593661
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile Access to Azafullerenyl Cation C
    Hashikawa Y; Murata Y
    J Am Chem Soc; 2017 Dec; 139(51):18468-18471. PubMed ID: 29206029
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diels-Alder reactivities of cycloalkenediones with tetrazine.
    Levandowski BJ; Hamlin TA; Eckvahl HJ; Bickelhaupt FM; Houk KN
    J Mol Model; 2019 Jan; 25(2):33. PubMed ID: 30627945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Lewis acid catalysts on Diels-Alder and hetero-Diels-Alder cycloadditions sharing a common transition state.
    Celebi-Olçüm N; Ess DH; Aviyente V; Houk KN
    J Org Chem; 2008 Oct; 73(19):7472-80. PubMed ID: 18781801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.